Vadim P Boyarskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5285566/publications.pdf

Version: 2024-02-01

		159358	149479
109	3,514	30	56
papers	citations	h-index	g-index
120	120	120	3112
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cyclometallated Platinum(II) Complexes for Obtaining Phenyl-Containing Silicone Rubbers via Catalytic Hydrosilylation Reaction. Russian Journal of General Chemistry, 2022, 92, 79-84.	0.3	9
2	Synthesis, Structure, and Antiproliferative Action of 2-Pyridyl Urea-Based Cu(II) Complexes. Biomedicines, 2022, 10, 461.	1.4	10
3	"Urea to Urea―Approach: Access to Unsymmetrical Ureas Bearing Pyridyl Substituents. Advanced Synthesis and Catalysis, 2022, 364, 1295-1304.	2.1	9
4	Hydrogen vs. halogen bonding in crystals of 2,5-dibromothiophene-3-carboxylic acid derivatives. Journal of Molecular Structure, 2022, 1260, 132785.	1.8	2
5	Dualism of 1,2,4-oxadiazole ring in noncovalent interactions with carboxylic group. Journal of Molecular Structure, 2022, 1262, 132974.	1.8	4
6	Reaction mechanism of regioisomerization in binuclear (diaminocarbene)PdII complexes. Inorganica Chimica Acta, 2021, 514, 120012.	1.2	7
7	Pd ^{II} - and Pt ^{II} -mediated coupling of aryl isocyanides with N-heterocyclic thiones. New Journal of Chemistry, 2021, 45, 1785-1789.	1.4	4
8	Catalyst-free synthesis of substituted pyridin-2-yl, quinolin-2-yl, and isoquinolin-1-yl carbamates from the corresponding hetaryl ureas and alcohols. Organic and Biomolecular Chemistry, 2021, 19, 6059-6065.	1.5	12
9	2,5-Dibromothiophenes: Halogen Bond Involving Packing Patterns and Their Relevance to Solid-State Polymerization. Crystal Growth and Design, 2021, 21, 2526-2540.	1.4	9
10	Synthesis and Structural Characterization of Half-Sandwich Arene–Ruthenium(II) Complexes with Bis(imidazol-1-yl)methane, Imidazole and Benzimidazole. Inorganics, 2021, 9, 34.	1.2	4
11	Ï€â€"Ï€ Noncovalent Interaction Involving 1,2,4- and 1,3,4-Oxadiazole Systems: The Combined Experimental, Theoretical, and Database Study. Molecules, 2021, 26, 5672.	1.7	32
12	Deprotonated diaminocarbene platinum complexes for thermoresponsive luminescent silicone materials: both catalysts and luminophores. Dalton Transactions, 2021, 50, 14994-14999.	1.6	19
13	Just Add the Gold: Aggregation-Induced-Emission Properties of Alkynylphosphinegold(I) Complexes Functionalized with Phenylene–Terpyridine Subunits. Inorganic Chemistry, 2021, 60, 18715-18725.	1.9	6
14	Entry into (E)-3-(1,2,4-oxadiazol-5-yl)acrylic acids via a one-pot ring-opening/ring-closing/retro-Diels-Alder reaction sequence. Tetrahedron Letters, 2020, 61, 151543.	0.7	11
15	Application of amidoximes for the heterocycles synthesis. Tetrahedron Letters, 2020, 61, 152403.	0.7	20
16	Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents. Chemistry of Heterocyclic Compounds, 2020, 56, 814-823.	0.6	12
17	The halogen bond with isocyano carbon reduces isocyanide odor. Nature Communications, 2020, 11, 2921.	5.8	46
18	Nucleophilic properties of the positively charged metal center in the solid state structure of Palladium(II)-Terpyridine complex. Journal of Molecular Structure, 2020, 1199, 126957.	1.8	3

#	Article	lF	CITATIONS
19	Water soluble palladium(<scp>ii</scp>) and platinum(<scp>ii</scp>) acyclic diaminocarbene complexes: solution behavior, DNA binding, and antiproliferative activity. New Journal of Chemistry, 2020, 44, 5762-5773.	1.4	20
20	Convenient entry to N-pyridinylureas with pharmaceutically privileged oxadiazole substituents via the acid-catalyzed C H activation of N-oxides. Tetrahedron Letters, 2019, 60, 151108.	0.7	20
21	Rhodium(I)-catalysed cross-linking of polysiloxanes conducted at room temperature. Journal of Catalysis, 2019, 372, 193-200.	3.1	27
22	(Isocyano Group Ï€â€Hole)â‹â‹â‹[dâ€M ^{II}] Interactions of (Isocyanide)[M ^{II}] Comple which Positively Charged Metal Centers (d ⁸ â€M=Pt, Pd) Act as Nucleophiles. Chemistry - A European Journal, 2019, 25, 8590-8598.	exes, in 1.7	53
23	Intermolecular hydrogen bonding H···Cl in crystal structure of palladium(II)- <i>bis(diaminocarbene) complex. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 155-164.</i>	0.4	8
24	Halides Held by Bifurcated Chalcogen–Hydrogen Bonds. Effect of μ _(S,N–H) Cl Contacts on Dimerization of Cl(carbene)Pd ^{ll} Species. Inorganic Chemistry, 2018, 57, 3420-3433.	1.9	66
25	Mechanism of generation of closo-decaborato amidrazones. Intramolecular non-covalent B–Hâ√Ï€(Ph) interaction determines stabilization of the configuration around the amidrazone Cî€N bond. New Journal of Chemistry, 2018, 42, 8693-8703.	1.4	52
26	Novel Cyanoarylporphyrazines with Triazole Groups at the Macrocycle Periphery as Potential Sensibilizers of Photodynamic Therapy and Optical Probes of Intracellular Viscosity. Russian Journal of General Chemistry, 2018, 88, 2339-2346.	0.3	1
27	Electrochemical Reduction of Trichlorobiphenyls: Mechanism and Regioselectivity. Russian Journal of General Chemistry, 2018, 88, 2058-2066.	0.3	1
28	Formation of Homo- and Heteronuclear Platinum(II) and Palladium(II) Carbene Complexes in the Reactions of Coordinated Isocyanides with Aminothiazaheterocycles. Russian Journal of General Chemistry, 2018, 88, 2119-2124.	0.3	13
29	Pt/Pd and I/Br Isostructural Exchange Provides Formation of C–I···Pd, C–Br···Pt, and C–Br···Pd Metal-Involving Halogen Bonding. Crystal Growth and Design, 2018, 18, 5973-5980.	1.4	52
30	Ligation-Enhanced Ï€-HoleÂ-Â-Â-Ï€ Interactions Involving Isocyanides: Effect of Ï€-HoleÂ-Â-Â-Ï€ Noncovalent Bonding on Conformational Stabilization of Acyclic Diaminocarbene Ligands. Inorganic Chemistry, 2018, 57, 6722-6733.	1.9	50
31	Electrophilicity of aliphatic nitrilium closo -decaborate clusters: Hyperconjugation provides an unexpected inverse reactivity order. Journal of Organometallic Chemistry, 2018, 870, 97-103.	0.8	12
32	Intra-/Intermolecular Bifurcated Chalcogen Bonding in Crystal Structure of Thiazole/Thiadiazole Derived Binuclear (Diaminocarbene)Pdll Complexes. Crystals, 2018, 8, 112.	1.0	46
33	Coupling of Bis(xylylisocyanide) Palladium(II) Complex with 1,2,4-Thiadiazole-5-amines. Russian Journal of General Chemistry, 2018, 88, 713-720.	0.3	12
34	Interaction of benzene-1,2-diamines with isocyanide complexes of palladium(II): Insight into the mechanism. Inorganica Chimica Acta, 2017, 455, 607-612.	1.2	9
35	H ₂ C(X)–X···X [–] (X = Cl, Br) Halogen Bonding of Dihalomethanes. Crystal Growth and Design, 2017, 17, 1353-1362.	1.4	78
36	Halogen ligands exchange in palladium(II) acyclic diaminocarbene complexes and their stereochemistry. Inorganica Chimica Acta, 2017, 458, 190-198.	1.2	6

#	Article	IF	Citations
37	New promising porphyrazine-based agents for optical theranostics of cancer. Russian Journal of General Chemistry, 2017, 87, 479-484.	0.3	11
38	Sodium difluoromethanesulfinateâ€"A difluoromethylating agent toward protonated heterocyclic bases. Russian Journal of Organic Chemistry, 2017, 53, 539-546.	0.3	9
39	Diversity of Isomerization Patterns and Protolytic Forms in Aminocarbene Pd ^{II} and Pt ^{II} Complexes Formed upon Addition of <i>N</i> , <i>N</i> ꀲ-Diphenylguanidine to Metal-Activated Isocyanides. Organometallics, 2017, 36, 4145-4159.	1.1	24
40	Sonogashira reaction catalyzed by palladium isocyanide complex modified in situ. Russian Journal of General Chemistry, 2017, 87, 1663-1666.	0.3	7
41	Optimization of the chemical stage of pretreatment of technical polychlorobiphenyls for destruction. Doklady Chemistry, 2017, 476, 206-210.	0.2	11
42	Fluorescent (pyrazolyl acetoxime)Zn II complexes: Synthetic, structural, and photophysical studies. Inorganica Chimica Acta, 2017, 455, 9-14.	1.2	3
43	Reaction of o-aminophenol and o-aminobenzyl alcohol with palladium(II) bis(isocyanide) complexes. Russian Journal of General Chemistry, 2016, 86, 2350-2355.	0.3	3
44	Alkenylation of Arenes and Heteroarenes with Alkynes. Chemical Reviews, 2016, 116, 5894-5986.	23.0	368
45	Crystal structure of cis-[PdCl2(CNMes)2]. Journal of Structural Chemistry, 2016, 57, 822-825.	0.3	16
46	Difference in Energy between Two Distinct Types of Chalcogen Bonds Drives Regioisomerization of Binuclear (Diaminocarbene)Pd ^{II} Complexes. Journal of the American Chemical Society, 2016, 138, 14129-14137.	6.6	114
47	Solvent- and halide-free synthesis of pyridine-2-yl substituted ureas through facile C–H functionalization of pyridine N-oxides. Green Chemistry, 2016, 18, 6630-6636.	4.6	33
48	Regioselectivity of the methanolysis of polychlorinated biphenyls. Russian Journal of General Chemistry, 2016, 86, 2318-2324.	0.3	4
49	Catalysis of the Suzuki reaction by acyclic diaminocarbene palladium complexes generated in situ. Russian Journal of General Chemistry, 2016, 86, 2033-2036.	0.3	11
50	Palladium(II)-Mediated Addition of Benzenediamines to Isocyanides: Generation of Three Types of Diaminocarbene Ligands Depending on the Isomeric Structure of the Nucleophile. Organometallics, 2016, 35, 218-228.	1.1	31
51	Synthesis of 1,4-dihydrophosphinoline 1-oxides by acid-promoted cyclization of 1-(diphenylphosphoryl)allenes. Organic and Biomolecular Chemistry, 2016, 14, 1370-1381.	1.5	29
52	1,4-Dihydrophosphinolines and their complexes with group 10 metals. New Journal of Chemistry, 2016, 40, 3336-3342.	1.4	10
53	Effect of the structural factors on reactivity of aryl halides in the copper-catalyzed arylation of aniline in aqueous medium. Russian Journal of General Chemistry, 2015, 85, 2277-2281.	0.3	2
54	Comparative activity of aryl, alkyl, and cycloalkyl halides in the suzuki reaction catalyzed with acyclic diaminocarbene complex of palladium. Russian Journal of General Chemistry, 2015, 85, 2541-2546.	0.3	6

#	Article	IF	CITATIONS
55	Metal-Mediated and Metal-Catalyzed Reactions of Isocyanides. Chemical Reviews, 2015, 115, 2698-2779.	23.0	442
56	Copper-catalyzed C–N bond cross-coupling of aryl halides and amines in water in the presence of ligand derived from oxalyl dihydrazide: scope and limitation. Tetrahedron, 2015, 71, 7931-7937.	1.0	13
57	Theoretical study of the structure of acyclic diaminocarbene ligands in Pd(II) complexes. Russian Journal of General Chemistry, 2015, 85, 894-898.	0.3	4
58	Application of palladium complexes bearing acyclic amino(hydrazido)carbene ligands as catalysts for copper-free Sonogashira cross-coupling. Journal of Catalysis, 2015, 329, 449-456.	3.1	58
59	Facile Gold-Catalyzed Heterocyclization of Terminal Alkynes and Cyanamides Leading to Substituted 2-Amino-1,3-Oxazoles. Organic Letters, 2015, 17, 3502-3505.	2.4	65
60	Synthesis of acyclic diaminocarbene palladium complex featuring triethoxysilane moiety. Inorganic Chemistry Communication, 2015, 61, 21-23.	1.8	8
61	Structure of isocyanide palladium(II) complexes and their reactivity toward nitrogen nucleophiles. Russian Journal of General Chemistry, 2015, 85, 2313-2333.	0.3	41
62	Acid-promoted transformations of 1-(diphenylphosphoryl)allenes: synthesis of novel 1,4-dihydrophosphinoline 1-oxides. Organic and Biomolecular Chemistry, 2015, 13, 1333-1338.	1.5	15
63	Cobalt-Catalyzed Methoxycarbonylation of Substituted Dichlorobenzenes as an Example of a Facile Radical Anion Nucleophilic Substitution in Chloroarenes. Molecules, 2014, 19, 5876-5897.	1.7	9
64	Reversible chelating in acyclic diaminocarbene palladium complex containing hydrazide fragment. Russian Journal of General Chemistry, 2014, 84, 2138-2141.	0.3	6
65	Hydrazinoaminocarbene–palladium complexes as easily accessible and convenient catalysts for copper-free Sonogashira reactions. Tetrahedron Letters, 2014, 55, 2101-2103.	0.7	34
66	Synthetic and structural investigation of [PdBr2(CNR)2] (R=Cy, Xyl). Journal of Molecular Structure, 2014, 1068, 222-227.	1.8	20
67	Facile and convenient synthesis of aryl hydrazines via copper-catalyzed C–N cross-coupling of aryl halides and hydrazine hydrate. Tetrahedron, 2014, 70, 4043-4048.	1.0	17
68	Palladium-ADC complexes as efficient catalysts in copper-free and room temperature Sonogashira coupling. Journal of Molecular Catalysis A, 2014, 395, 162-171.	4.8	50
69	Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2â€Diazoâ€1â€Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications. Chemistry - A European Journal, 2014, 20, 13162-13173.	1.7	68
70	Polar Redâ€Emitting Rhodamine Dyes with Reactive Groups: Synthesis, Photophysical Properties, and Twoâ€Color STED Nanoscopy Applications. Chemistry - A European Journal, 2014, 20, 146-157.	1.7	52
71	Catalytic activity of palladium(II) diaminocarbene complexes in the Sonogashira and Suzuki reactions. Russian Journal of Organic Chemistry, 2013, 49, 551-554.	0.3	11
72	Steric effect of substituents in haloarenes on the rate of cross-coupling reactions. Russian Journal of Organic Chemistry, 2013, 49, 360-365.	0.3	18

#	Article	IF	CITATIONS
73	ADC-Based Palladium Catalysts for Aqueous Suzuki–Miyaura Cross-Coupling Exhibit Greater Activity than the Most Advantageous Catalytic Systems. Organometallics, 2013, 32, 5212-5223.	1.1	67
74	<i>Cis/trans</i> equilibrium as the way to form Pd carbene catalyst from <i>trans</i> isocyanide complex. Journal of Coordination Chemistry, 2013, 66, 3592-3601.	0.8	12
75	Carbonylation of halides using catalysts based on cobalt carbonyl: a promising approach to the synthesis of organic acids as intermediates in drug production. Pharmaceutical Chemistry Journal, 2013, 47, 315-317.	0.3	0
76	Coupling of C-amino aza-substituted heterocycles with an isocyanide ligand in palladium(ii) complex. Russian Chemical Bulletin, 2013, 62, 758-766.	0.4	25
77	New acyclic Pd–diaminocarbene catalyst for Suzuki arylation of meso-chlorosubstituted tricarboindocyanine dyes. Tetrahedron Letters, 2013, 54, 1202-1204.	0.7	35
78	Catalytic activity of palladium acyclic diaminocarbene complexes in the synthesis of 1,3-diarylpropynones via Sonogashira reaction: cross-versus homo-coupling. Tetrahedron Letters, 2013, 54, 2369-2372.	0.7	35
79	Metal-mediated coupling of a coordinated isocyanide and indazoles. Dalton Transactions, 2013, 42, 10394.	1.6	30
80	Mechanism and Regioselectivity of the Electrochemical Reduction in Polychlorobiphenyls (PCBs): Kinetic Analysis for the Successive Reduction of Chlorines from Dichlorobiphenyls. Journal of Physical Chemistry C, 2012, 116, 655-664.	1.5	20
81	Acyclic diaminocarbenes (ADCs) as a promising alternative to N-heterocyclic carbenes (NHCs) in transition metal catalyzed organic transformations. Coordination Chemistry Reviews, 2012, 256, 2029-2056.	9.5	169
82	Palladium catalyzed cyanation of o-dichloroarenes with potassium hexacyanoferrate(ii). Russian Chemical Bulletin, 2012, 61, 980-983.	0.4	5
83	N(2)-Monosubstituted bishydrazides of oxalic acid as new efficient components of the system for the copper-catalyzed C-N cross-coupling in water. Russian Chemical Bulletin, 2012, 61, 1009-1013.	0.4	5
84	Crystal structures and conformational behavior in solution of two isomeric dicyanobiphenyls. Journal of Molecular Structure, 2011, 998, 79-83.	1.8	1
85	Reduction of mono- and dichlorobiphenyls with sodium-naphthalene complex. Russian Journal of General Chemistry, 2010, 80, 800-808.	0.3	6
86	Regioselective electrochemical reduction of 2,4-dichlorobiphenyl $\hat{a}\in$ Distinct standard reduction potentials for carbon $\hat{a}\in$ chlorine bonds using convolution potential sweep voltammetry. Chemical Physics Letters, 2010, 490, 148-153.	1.2	11
87	Rhodaminesâ€NN: A Novel Class of Caged Fluorescent Dyes. Angewandte Chemie - International Edition, 2010, 49, 3520-3523.	7.2	162
88	Cover Picture: Rhodaminesâ€NN: A Novel Class of Caged Fluorescent Dyes (Angew. Chem. Int. Ed. 20/2010). Angewandte Chemie - International Edition, 2010, 49, 3391-3391.	7.2	0
89	Chemoselectivity of cobalt-catalysed carbonylationâ€"A reliable platform for the synthesis of fluorinated benzoic acids. Journal of Fluorine Chemistry, 2010, 131, 81-85.	0.9	5
90	Experimental and theoretical studies on synthesis and structure elucidation of some polychlorinated biphenyl derivatives. Journal of Molecular Structure, 2010, 975, 180-185.	1.8	6

#	Article	IF	Citations
91	10.1007/s11176-008-1021-2., 2010, 78, 127.		О
92	Rhodamine Spiroamides for Multicolor Singleâ€Molecule Switching Fluorescent Nanoscopy. Chemistry - A European Journal, 2009, 15, 10762-10776.	1.7	112
93	Structure of 2-chloro-3-phenylbenzoic acid. Journal of Structural Chemistry, 2009, 50, 585-587.	0.3	4
94	Participation of cyclic cobaltolactone anionic complex in the catalytic cycle of arylhalides carbonylation. Russian Journal of General Chemistry, 2009, 79, 2449-2451.	0.3	2
95	Photostable, Amino Reactive and Waterâ€Soluble Fluorescent Labels Based on Sulfonated Rhodamine with a Rigidized Xanthene Fragment. Chemistry - A European Journal, 2008, 14, 1784-1792.	1.7	71
96	Calculation of the possibility of formation of a cyclic metallolactone anionic complex in the methyloxirane-potassium tetracarbonylcobaltate system. Russian Journal of General Chemistry, 2008, 78, 1380-1381.	0.3	2
97	Catalytic systems for carbonylation of aryl halides. Russian Journal of General Chemistry, 2008, 78, 1742-1753.	0.3	10
98	Multicolor Far-Field Fluorescence Nanoscopy through Isolated Detection of Distinct Molecular Species. Nano Letters, 2008, 8, 2463-2468.	4.5	224
99	Production of aromatic acids and the utilization of polychlorobiphenyls dioxin-like dielectrics by means of aryl halide carbonylation. Petroleum Chemistry, 2007, 47, 268-272.	0.4	1
100	Mechanism of the catalytic carbonylation of aryl halides with a modified cobalt carbonyl. Russian Journal of General Chemistry, 2007, 77, 915-922.	0.3	9
101	Synthesis of heteroaromatic carboxylic acids by carbonylation of hetaryl halides with catalysts based on cobalt carbonyl modified with epoxides. Russian Journal of Applied Chemistry, 2007, 80, 571-575.	0.1	4
102	A versatile procedure for synthesis of organic acids by cobalt carbonyl catalyzed carbonylation of organic halides. Russian Journal of Applied Chemistry, 2007, 80, 945-950.	0.1	1
103	Dechlorination of persistent organic pollutants polychlorobiphenyls by catalytic carbonylation. Russian Journal of Applied Chemistry, 2007, 80, 1090-1096.	0.1	6
104	New synthesis of aryl \hat{l}^2 -bromoalkyl sulfones from arenesulfonyl chlorides via cross halogenation. Russian Journal of Organic Chemistry, 2007, 43, 990-994.	0.3	10
105	Carbonylation of chlorobiphenyls catalyzed by modified cobalt carbonyl. Russian Journal of Organic Chemistry, 2007, 43, 1760-1764.	0.3	5
106	A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids. Chemosphere, 2006, 62, 368-374.	4.2	5
107	Application of copper(I) halides to modifying reactivity of polyhalomethanes and arenesulfonyl chlorides in free-radical addition. "Cross-halogenation―reaction. Russian Journal of Organic Chemistry, 2006, 42, 1120-1130.	0.3	17
108	Synthesis of Aromatic Carboxylic Acids by Carbonylation of Aryl Halides in the Presence of Epoxide-Modified Cobalt Carbonyls as Catalysts. Russian Journal of Applied Chemistry, 2005, 78, 1844-1848.	0.1	6

#	Article	IF	CITATIONS
109	Addition of Bromotrichloromethane and Tetrachloromethane tocis-Cyclooctene, Cyclohexene, and Norbornadiene in the Presence of Palladium(II) Complexes. Russian Journal of Organic Chemistry, 2003, 39, 933-946.	0.3	11