Guangqian Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528525/publications.pdf

Version: 2024-02-01

		279487	344852
35	1,823	23	36
papers	citations	h-index	g-index
36	36	36	2284
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Targeted delivery of hemostats to complex bleeding wounds with magnetic guidance for instant hemostasis. Chemical Engineering Journal, 2022, 427, 130916.	6.6	25
2	Regulating wound moisture for accelerated healing: A strategy for the continuous drainage of wound exudates by mimicking plant transpiration. Chemical Engineering Journal, 2022, 429, 131964.	6.6	13
3	Microcluster colloidosomes for hemostat delivery into complex wounds: A platform inspired by the attack action of torpedoes. Bioactive Materials, 2022, 16, 372-387.	8.6	8
4	Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds. Research, 2022, 2022, .	2.8	7
5	Chestnut-like macro-acanthosphere triggered hemostasis: a featured mechanism based on puncturing red blood cells. Nanoscale, 2021, 13, 9843-9852.	2.8	6
6	A cellulose/Konjac glucomannan–based macroporous antibacterial wound dressing with synergistic and complementary effects for accelerated wound healing. Cellulose, 2021, 28, 5591-5609.	2.4	24
7	Biogenetic Acellular Dermal Matrix Maintaining Rich Interconnected Microchannels for Accelerated Tissue Amendment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 16048-16061.	4.0	16
8	Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22225-22239.	4.0	26
9	Erythrocyte membrane-camouflaged nanoworms with on-demand antibiotic release for eradicating biofilms using near-infrared irradiation. Bioactive Materials, 2021, 6, 2956-2968.	8.6	27
10	Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioactive Materials, 2021, 6, 4625-4639.	8.6	14
11	Recent advances in materials for hemostatic management. Biomaterials Science, 2021, 9, 7343-7378.	2.6	40
12	Minimizing antibiotic dosage through in situ formation of gold nanoparticles across antibacterial wound dressings: A facile approach using silk fabric as the base substrate. Journal of Cleaner Production, 2020, 243, 118604.	4.6	38
13	Improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles. Cellulose, 2020, 27, 385-400.	2.4	31
14	Puff pastry-like chitosan/konjac glucomannan matrix with thrombin-occupied microporous starch particles as a composite for hemostasis. Carbohydrate Polymers, 2020, 232, 115814.	5.1	46
15	Selfâ€Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Advanced Functional Materials, 2020, 30, 2004153.	7.8	62
16	Self-contracting oxidized starch/gelatin hydrogel for noninvasive wound closure and wound healing. Materials and Design, 2020, 194, 108916.	3.3	64
17	A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds. Biomaterials Science, 2020, 8, 1910-1922.	2.6	62
18	Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. International Journal of Biological Macromolecules, 2020, 148, 921-931.	3.6	55

#	Article	IF	CITATIONS
19	Biodegradable Microporous Starch with Assembled Thrombin for Rapid Induction of Hemostasis. ACS Sustainable Chemistry and Engineering, 2019, 7, 9121-9132.	3.2	45
20	A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate Polymers, 2018, 183, 70-80.	5.1	141
21	Novel wound dressing with chitosan gold nanoparticles capped with a small molecule for effective treatment of multiantibiotic-resistant bacterial infections. Nanotechnology, 2018, 29, 425603.	1.3	36
22	Self-assembly of natural protein and imidazole molecules on gold nanoparticles: Applications in wound healing against multi-drug resistant bacteria. International Journal of Biological Macromolecules, 2018, 119, 505-516.	3.6	24
23	Imidazole-molecule-capped chitosan–gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. Journal of Colloid and Interface Science, 2018, 531, 269-281.	5.0	41
24	An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydrate Polymers, 2018, 201, 522-531.	5.1	251
25	Evaluation of artificial skin made from silkworm cocoons. Journal of Materials Science, 2017, 52, 5435-5448.	1.7	9
26	Healing of skin wounds using a new cocoon scaffold loaded with platelet-rich or platelet-poor plasma. RSC Advances, 2017, 7, 6474-6485.	1.7	16
27	Accelerated wound-healing capabilities of a dressing fabricated from silkworm cocoon. International Journal of Biological Macromolecules, 2017, 102, 901-913.	3.6	30
28	In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity. Carbohydrate Polymers, 2017, 173, 556-565.	5.1	91
29	In situ assembly of Ag nanoparticles (AgNPs) on porous silkworm cocoon-based wound film: enhanced antimicrobial and wound healing activity. Scientific Reports, 2017, 7, 2107.	1.6	46
30	Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules, 2017, 18, 3766-3775.	2.6	149
31	Preparation of a partially carboxymethylated cotton gauze and study of its hemostatic properties. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 407-416.	1.5	16
32	Preparation and characterization of a chitin/platelet-poor plasma composite as a hemostatic material. RSC Advances, 2016, 6, 95358-95368.	1.7	13
33	Preparation and characterization of N -chitosan as a wound healing accelerator. International Journal of Biological Macromolecules, 2016, 93, 1295-1303.	3.6	59
34	Healing of skin wounds with a chitosan–gelatin sponge loaded with tannins and platelet-rich plasma. International Journal of Biological Macromolecules, 2016, 82, 884-891.	3.6	116
35	Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1026-1034.	2.5	175