
Arjen Schots

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glyco-Engineering Plants to Produce Helminth Glycoproteins as Prospective Biopharmaceuticals: Recent Advances, Challenges and Future Prospects. Frontiers in Plant Science, 2022, 13, 882835.	1.7	2
2	β-Hexosaminidases Along the Secretory Pathway of Nicotiana benthamiana Have Distinct Specificities Toward Engineered Helminth N-Glycans on Recombinant Glycoproteins. Frontiers in Plant Science, 2021, 12, 638454.	1.7	7
3	The helminth glycoprotein omegaâ€1 improves metabolic homeostasis in obese mice through type 2 immunityâ€independent inhibition of food intake. FASEB Journal, 2021, 35, e21331.	0.2	20
4	Helminth Glycans at the Host-Parasite Interface and Their Potential for Developing Novel Therapeutics. Frontiers in Molecular Biosciences, 2021, 8, 807821.	1.6	5
5	Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Scientific Reports, 2020, 10, 18528.	1.6	14
6	Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. Journal of Biological Chemistry, 2018, 293, 10042-10058.	1.6	20
7	Distinct Roles of Non-Overlapping Surface Regions of the Coiled-Coil Domain in the Potato Immune Receptor Rx1. Plant Physiology, 2018, 178, 1310-1331.	2.3	18
8	Granulocyte-macrophage colony-stimulating factor negatively regulates early IL-10-mediated responses. Future Science OA, 2018, 4, FSO288.	0.9	2
9	Production and glyco-engineering of immunomodulatory helminth glycoproteins in plants. Scientific Reports, 2017, 7, 45910.	1.6	54
10	Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa. Plant Physiology, 2017, 175, 498-510.	2.3	40
11	Human Alpha Galactosidases Transiently Produced in Nicotiana benthamiana Leaves: New Insights in Substrate Specificities with Relevance for Fabry Disease. Frontiers in Plant Science, 2017, 8, 1026.	1.7	12
12	Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells. PLoS Pathogens, 2017, 13, e1006539.	2.1	78
13	Re-evaluation of IL-10 signaling reveals novel insights on the contribution of the intracellular domain of the IL-10R2 chain. PLoS ONE, 2017, 12, e0186317.	1.1	18
14	Physical Interaction of T Cells with Dendritic Cells Is Not Required for the Immunomodulatory Effects of the Edible Mushroom Agaricus subrufescens. Frontiers in Immunology, 2016, 7, 519.	2.2	9
15	Coâ€expression of the protease furin in <i>Nicotiana benthamiana</i> leads to efficient processing of latent transforming growth factorâ€Î²1 into a biologically active protein. Plant Biotechnology Journal, 2016, 14, 1695-1704.	4.1	34
16	The Nâ€glycan on Asn54 affects the atypical Nâ€glycan composition of plantâ€produced interleukinâ€22, but does not influence its activity. Plant Biotechnology Journal, 2016, 14, 670-681.	4.1	13
17	Assessing the immunomodulatory potential of highâ€molecularâ€weight extracts from mushrooms; an assay based on <scp>THP</scp> â€1 macrophages. Journal of the Science of Food and Agriculture, 2015, 95, 344-350.	1.7	7
18	Transient Expression of Secretory IgA In Planta is Optimal Using a Multi-Gene Vector and may be Further Enhanced by Improving Joining Chain Incorporation. Frontiers in Plant Science, 2015, 6, 1200.	1.7	18

#	Article	IF	CITATIONS
19	Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors. PLoS Pathogens, 2014, 10, e1004569.	2.1	111
20	Monomeric <scp>l</scp> g <scp>A</scp> can be produced <i>in planta</i> as efficient as <scp>l</scp> g <scp>G</scp> , yet receives different <i><scp>N</scp></i> â€glycans. Plant Biotechnology Journal, 2014, 12, 1333-1342.	4.1	21
21	N-Glycosylation of Plant-produced Recombinant Proteins. Current Pharmaceutical Design, 2013, 19, 5503-5512.	0.9	101
22	Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10119-10124.	3.3	246
23	3D Domain Swapping Causes Extensive Multimerisation of Human Interleukin-10 When Expressed In Planta. PLoS ONE, 2012, 7, e46460.	1.1	19
24	Nucleocytoplasmic Distribution Is Required for Activation of Resistance by the Potato NB-LRR Receptor Rx1 and Is Balanced by Its Functional Domains. Plant Cell, 2011, 22, 4195-4215.	3.1	140
25	Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken. Developmental and Comparative Immunology, 2010, 34, 1254-1262.	1.0	101
26	Plant glycans: friend or foe in vaccine development?. Expert Review of Vaccines, 2010, 9, 835-842.	2.0	78
27	Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 2006, 122, 382-391.	1.9	34
28	Display and selection of chicken IgA Fab fragments. Veterinary Immunology and Immunopathology, 2006, 110, 129-140.	0.5	10
29	A Symbiont-Independent Endo-1,4-β-Xylanase from the Plant-Parasitic Nematode Meloidogyne incognita. Molecular Plant-Microbe Interactions, 2006, 19, 521-529.	1.4	71
30	Fluorescent T7 display phages obtained by translational frameshift. Nucleic Acids Research, 2006, 34, e137-e137.	6.5	14
31	Isolation of recombinant antibodies (scFvs) to grapevine virus B. Journal of Virological Methods, 2005, 124, 191-195.	1.0	18
32	Epitope identification and in silico prediction of the specificity of antibodies binding to the coat proteins of Potato Virus Y strains. European Journal of Plant Pathology, 2005, 111, 391-397.	0.8	11
33	Phage display-selected single-chain antibodies confer high levels of resistance against Tomato spotted wilt virus. Journal of General Virology, 2005, 86, 2107-2113.	1.3	35
34	Towards Sorting of Biolibraries Using Single-Molecule Fluorescence Detection Techniques. Current Pharmaceutical Biotechnology, 2004, 5, 173-179.	0.9	8
35	Design of a confocal microfluidic particle sorter using fluorescent photon burst detection. Review of Scientific Instruments, 2004, 75, 2892-2898.	0.6	20
36	A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity. Biochemical Journal, 2004, 380, 669-676.	1.7	105

#	Article	IF	CITATIONS
37	A nematode expansin acting on plants. Nature, 2004, 427, 30-30.	13.7	180
38	Formation of Disulfide Bridges by a Single-chain Fv Antibody in the Reducing Ectopic Environment of the Plant Cytosol. Journal of Biological Chemistry, 2002, 277, 19339-19345.	1.6	33
39	Detection of Flowing Fluorescent Particles in a Microcapillary Using Fluorescence Correlation Spectroscopy. Analytical Chemistry, 2002, 74, 5350-5357.	3.2	42
40	Green Fluorescent Protein Fluobody Immunosensors: Immunofluorescence with GFP-Antibody Fusion Proteins. , 2002, 183, 265-273.		3
41	Towards Plantibody-Mediated Resistance to Plant Parasitic Nematodes. Developments in Plant Genetics and Breeding, 2000, 5, 130-136.	0.6	Ο
42	Both Induction and Morphogenesis of Cyst Nematode Feeding Cells Are Mediated by Auxin. Molecular Plant-Microbe Interactions, 2000, 13, 1121-1129.	1.4	182
43	Fluorescence dynamics of green fluorescent protein in AOT reversed micelles. Biophysical Chemistry, 2000, 87, 73-84.	1.5	55
44	Degradation of plant cell walls by a nematode. Nature, 2000, 406, 36-37.	13.7	167
45	Nematode Parasitism Genes. Annual Review of Phytopathology, 2000, 38, 365-396.	3.5	270
46	Structural Dynamics of Green Fluorescent Protein Alone and Fused with a Single Chain Fv Protein. Journal of Biological Chemistry, 2000, 275, 17556-17560.	1.6	164
47	Application of Phage Display in Selecting Tomato spotted wilt virus-Specific Single-Chain Antibodies (scFvs) for Sensitive Diagnosis in ELISA. Phytopathology, 2000, 90, 183-190.	1.1	30
48	An Efficient cDNA-AFLP-Based Strategy for the Identification of Putative Pathogenicity Factors from the Potato Cyst Nematode Globodera rostochiensis. Molecular Plant-Microbe Interactions, 2000, 13, 830-836.	1.4	101
49	Naturally Induced Secretions of the Potato Cyst Nematode Co-stimulate the Proliferation of Both Tobacco Leaf Protoplasts and Human Peripheral Blood Mononuclear Cells. Molecular Plant-Microbe Interactions, 1999, 12, 872-881.	1.4	37
50	Title is missing!. European Journal of Plant Pathology, 1999, 105, 147-156.	0.8	13
51	Fluobodies: green fluorescent single-chain Fv fusion proteins. Journal of Immunological Methods, 1999, 230, 121-130.	0.6	52
52	pSKAP/S: An Expression Vector for the Production of Single-Chain Fv Alkaline Phosphatase Fusion Proteins. Protein Expression and Purification, 1999, 16, 63-69.	0.6	46
53	Cloning of a trans-spliced glyceraldenyde-3-phosphate-denydrogenase gene from the potato cyst nematode Globodera rostochiensis and expression of its putative promoter region in Caenorhabditis elegans1Note: Nucleotide sequence data reported in this paper is available in the EMBL, GenBankâ,,¢ and DDJB data bases under the accession number AF004522.1. Molecular and Biochemical Parasitology,	0.5	24
54	1998, 96, 59-67. Genomic organization of four β-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene, 1998, 220, 61-70.	1.0	128

#	Article	IF	CITATIONS
55	In plantamonitoring of the activity of two constitutive promoters, CaMV 35S and TR2′, in developing feeding cells induced byGlobodera rostochiensisusing green fluorescent protein in combination with confocal laser scanning microscopy. Physiological and Molecular Plant Pathology, 1998, 52, 275-284.	1.3	43
56	Endogenous cellulases in animals: Isolation of Â-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4906-4911.	3.3	452
57	Development of Specific Recombinant Monoclonal Antibodies Against the Lipopolysaccharide of Ralstonia solanacearum Race 3. Phytopathology, 1998, 88, 795-803.	1.1	57
58	Potato Root Diffusate-Induced Secretion of Soluble, Basic Proteins Originating from the Subventral Esophageal Glands of Potato Cyst Nematodes. Phytopathology, 1997, 87, 839-845.	1.1	42
59	Improving scFv antibody expression levels in the plant cytosol1. FEBS Letters, 1997, 415, 235-241.	1.3	78
60	Regulation of the Flavin Redox Potential by Flavin-Binding Antibodies. FEBS Journal, 1997, 249, 393-400.	0.2	9
61	Towards Plantibody-Mediated Resistance Against Nematodes. Developments in Plant Pathology, 1997, , 262-271.	0.1	6
62	Phage antibodies against an unstable hapten: Oxygen sensitive reduced flavin. FEBS Letters, 1996, 388, 242-244.	1.3	16
63	Expression and Functional Characterization of a Single Chain FV Antibody Directed against Secretions Involved in Plant Nematode Infection Process. Biochemical and Biophysical Research Communications, 1996, 220, 255-263.	1.0	56
64	Hapten Design for Antibodyâ€Catalyzed Decarboxylation and Ringâ€Opening Reactions of Benzisoxazoles. Israel Journal of Chemistry, 1996, 36, 177-183.	1.0	7
65	Cluster analysis of 36Globodera pallida field populations using two sets of molecular markers. European Journal of Plant Pathology, 1996, 102, 577-584.	0.8	10
66	The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Molecular Biology, 1996, 30, 781-793.	2.0	260
67	Secretory Granule Proteins from the Subventral Esophageal Glands of the Potato Cyst Nematode Identified by Monoclonal Antibodies to a Protein Fraction from Second-Stage Juveniles. Molecular Plant-Microbe Interactions, 1996, 9, 39.	1.4	47
68	Gene Pool Similarities of Potato Cyst Nematode Populations Assessed by AFLP Analysis. Molecular Plant-Microbe Interactions, 1996, 9, 47.	1.4	104
69	Monoclonal Antibodies Against Two Electron Reduced Riboflavin and a Quantification of Affinity Constants for this Oxygen-Sensitive Molecule. FEBS Journal, 1995, 234, 245-250.	0.2	12
70	Monoclonal Antibody-Based Double-Antibody Sandwich-ELISA for Detection ofVerticilliumspp. in Ornamentals. Phytopathology, 1995, 85, 608.	1.1	10
71	Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco. Plant Molecular Biology, 1994, 26, 1701-1710.	2.0	124
72	Monoclonal Antibodies-Based Immunofluorescence Test for Detection of Conidia ofBotrytis cinereaon Cut Flowers. Phytopathology, 1994, 84, 351.	1.1	20

#	Article	IF	CITATIONS
73	Inter- and Intraspecific Variation Between Populations ofGlobodera rostochiensisandG. pallidaRevealed by Random Amplified Polymorphic DNA. Phytopathology, 1994, 84, 807.	1.1	36
74	Perspectives for Genetically Engineered Antibodies for the Identification of Nematodes. , 1994, , 129-140.		0
75	Epitope mapping on fragments of beet necrotic yellow vein virus coat protein. Journal of General Virology, 1992, 73, 695-700.	1.3	17
76	Identification and management of virulence genes in potato cyst nematodes. European Journal of Plant Pathology, 1992, 98, 157-163.	0.5	4
77	â€~Plantibodies': a flexible approach to design resistance against pathogens. European Journal of Plant Pathology, 1992, 98, 183-191.	0.5	28
78	Specificity of polycllonal and monoclonal antibodies for the identification of Xanthomonas campestris pv. campestris. European Journal of Plant Pathology, 1992, 98, 81-94.	0.5	21
79	Antigenic analysis of the coat protein of beet necrotic yellow vein virus by means of monoclonal antibodies. Journal of General Virology, 1990, 71, 2229-2232.	1.3	18
80	Electron microscopical demonstration of different binding sites for monoclonal antibodies on particles of beet necrotic yellow vein virus. Journal of General Virology, 1990, 71, 731-733.	1.3	17
81	Monoclonal Antibodies Against Rat Glutathione S-Transferase Isoenzymes 2-2 and 3-3. Hybridoma, 1989, 8, 475-480.	0.9	0
82	Serological Differentiation of the Potato-Cyst Nematodes <i>Globodera pallida</i> and <i>G. rostochiensis</i> : II. Preparation and Characterization of Species Specific Monoclonal Antibodies. Hybridoma, 1989, 8, 401-413.	0.9	15
83	A biotechnological strategy involving monoclonal antibodies for improvement of potato farming by identification and quantification of potato cyst nematodes in soil samples. EPPO Bulletin, 1988, 18, 369-373.	0.6	3
84	A method for the determination of antibody affinity using a direct ELISA. Journal of Immunological Methods, 1988, 109, 225-233.	0.6	43
85	Species-Specific and Thermostable Proteins from Second-Stage Larvae ofGlobodera rostochiensisandG. pallida. Phytopathology, 1988, 78, 300.	1.1	7
86	Serological differentiation of the potato-cyst nematodes <i>Globodera pallida</i> and G. <i>rostochiensis</i> : partial purification of species-specific proteins. Parasitology, 1987, 95, 421-428.	0.7	10
87	Constitutive nitrogenase synthesis from de novo transcribed mRNA in isolated Rhizobium leguminosarum bacteroids. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1983, 740, 313-322.	2.4	6