## Monique M P D Heijmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284747/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.                                                                                                         | 27.8 | 451       |
| 2  | Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature<br>Climate Change, 2015, 5, 67-70.                                                                 | 18.8 | 147       |
| 3  | The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environmental Research Letters, 2011, 6, 035502.                  | 5.2  | 126       |
| 4  | Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. Journal of Ecology, 2001, 89, 268-279.                                              | 4.0  | 115       |
| 5  | The effect of temperature on growth and competition between Sphagnum species. Oecologia, 2008, 156, 155-167.                                                                                   | 2.0  | 94        |
| 6  | Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment, 2022, 3, 68-84.                                                                                        | 29.7 | 87        |
| 7  | Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and<br>drought events. Global Change Biology, 2013, 19, 2240-2250.                            | 9.5  | 70        |
| 8  | The Nitrogen Cycle in Boreal Peatlands. , 2006, , 195-230.                                                                                                                                     |      | 69        |
| 9  | Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia, 2009, 159, 705-715.                                                           | 2.0  | 68        |
| 10 | Effects of Increased Nitrogen Deposition on the Distribution of 15N-labeled Nitrogen between<br>Sphagnum and Vascular Plants. Ecosystems, 2002, 5, 500-508.                                    | 3.4  | 57        |
| 11 | Controls on moss evaporation in a boreal black spruce forest. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.                                                                                 | 4.9  | 57        |
| 12 | Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and<br>Biogeography, 2018, 27, 1402-1411.                                                              | 5.8  | 57        |
| 13 | Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos, 2002, 97, 415-425.                                         | 2.7  | 52        |
| 14 | Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a<br>Siberian tundra site. Plant and Soil, 2016, 407, 55-65.                                   | 3.7  | 49        |
| 15 | Field Simulation of Global Change: Transplanting Northern Bog Mesocosms Southward. Ecosystems, 2010, 13, 712-726.                                                                              | 3.4  | 47        |
| 16 | Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with<br>temperature and precipitation across the tundra biome. Polar Biology, 2017, 40, 2265-2278. | 1.2  | 47        |
| 17 | Effects of elevated CO 2 and vascular plants on evapotranspiration in bog vegetation. Global Change<br>Biology, 2001, 7, 817-827.                                                              | 9.5  | 44        |
| 18 | Response of Sphagnum species mixtures to increased temperature and nitrogen availability. Plant<br>Ecology, 2009, 204, 97-111.                                                                 | 1.6  | 43        |

Monique M P D Heijmans

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences, 2016, 13, 6229-6245.                                           | 3.3  | 40        |
| 20 | Response of a Sphagnum bog plant community to elevated CO2 and N supply. Plant Ecology, 2002, 162, 123-134.                                                                                      | 1.6  | 37        |
| 21 | Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences, 2016, 13, 4049-4064.                                                                            | 3.3  | 33        |
| 22 | The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra. Polar Biology, 2016, 39, 1245-1255.                 | 1.2  | 24        |
| 23 | Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nature<br>Communications, 2022, 13, 1556.                                                             | 12.8 | 24        |
| 24 | Dwarf shrubs are stronger competitors than graminoid species at high nutrient supply in peat bogs.<br>Plant Ecology, 2009, 204, 125-134.                                                         | 1.6  | 20        |
| 25 | Rapid Vegetation Succession and Coupled Permafrost Dynamics in Arctic Thaw Ponds in the Siberian<br>Lowland Tundra. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005618. | 3.0  | 20        |
| 26 | Thaw pond development and initial vegetation succession in experimental plots at a Siberian lowland tundra site. Plant and Soil, 2017, 420, 147-162.                                             | 3.7  | 19        |
| 27 | Effectiveness of Turf Stripping as a Measure for Restoring Speciesâ€Rich Fen Meadows in Suboptimal<br>Hydrological Conditions. Restoration Ecology, 2007, 15, 627-637.                           | 2.9  | 6         |
| 28 | Plant trait response of tundra shrubs to permafrost thaw and nutrient addition. Biogeosciences, 2020, 17, 4981-4998.                                                                             | 3.3  | 6         |