
Qingyu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284615/publications.pdf Version: 2024-02-01

OINCYLL CHEN

#	Article	IF	CITATIONS
1	Benchmarks for measurement of duplicate detection methods in nucleotide databases. Database: the Journal of Biological Databases and Curation, 2023, 2023, .	3.0	10
2	DeepLensNet: Deep Learning Automated Diagnosis and Quantitative Classification of Cataract Type and Severity. Ophthalmology, 2022, 129, 571-584.	5.2	23
3	Predicting myocardial infarction through retinal scans and minimal personal information. Nature Machine Intelligence, 2022, 4, 55-61.	16.0	30
4	Detecting visually significant cataract using retinal photograph-based deep learning. Nature Aging, 2022, 2, 264-271.	11.6	14
5	Citation cascade and the evolution of topic relevance. Journal of the Association for Information Science and Technology, 2021, 72, 110-127.	2.9	14
6	LitCovid: an open database of COVID-19 literature. Nucleic Acids Research, 2021, 49, D1534-D1540.	14.5	189
7	Multimodal, multitask, multiattention (M3) deep learning detection of reticular pseudodrusen: Toward automated and accessible classification of age-related macular degeneration. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1135-1148.	4.4	11
8	LitSuggest: a web-based system for literature recommendation and curation using machine learning. Nucleic Acids Research, 2021, 49, W352-W358.	14.5	28
9	Artificial Intelligence in Action: Addressing the COVID-19 Pandemic with Natural Language Processing. Annual Review of Biomedical Data Science, 2021, 4, 313-339.	6.5	38
10	Improving Interpretability in Machine Diagnosis. Ophthalmology Science, 2021, 1, 100038.	2.5	8
11	Artificial Intelligence in Age-Related Macular Degeneration (AMD). , 2021, , 101-112.		3
12	Benchmarking Effectiveness and Efficiency of Deep Learning Models for Semantic Textual Similarity in the Clinical Domain: Validation Study. JMIR Medical Informatics, 2021, 9, e27386.	2.6	5
13	Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS AMIA Annual Symposium proceedings, 2021, 2021, 506-515.	0.2	0
14	Quality Matters: Biocuration Experts on the Impact of Duplication and Other Data Quality Issues in Biological Databases. Genomics, Proteomics and Bioinformatics, 2020, 18, 91-103.	6.9	14
15	Better synonyms for enriching biomedical search. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1894-1902.	4.4	6
16	Predicting risk of late age-related macular degeneration using deep learning. Npj Digital Medicine, 2020, 3, 111.	10.9	33
17	Privacy concerns of the Australian My Health Record: Implications for other large-scale opt-out personal health records. Information Processing and Management, 2020, 57, 102364.	8.6	21
18	Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records. BMC Medical Informatics and Decision Making, 2020, 20, 73.	3.0	15

Qingyu Chen

#	Article	IF	CITATIONS
19	BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale. PLoS Computational Biology, 2020, 16, e1007617.	3.2	43
20	Deep Learning Automated Detection of Reticular Pseudodrusen from Fundus Autofluorescence Images or Color Fundus Photographs in AREDS2. Ophthalmology, 2020, 127, 1674-1687.	5.2	19
21	Keep up with the latest coronavirus research. Nature, 2020, 579, 193-193.	27.8	230
22	An Empirical Study of Multi-Task Learning on BERT for Biomedical Text Mining. , 2020, , .		49
23	LitSense: making sense of biomedical literature at sentence level. Nucleic Acids Research, 2019, 47, W594-W599.	14.5	37
24	ML-Net: multi-label classification of biomedical texts with deep neural networks. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1279-1285.	4.4	83
25	A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs. Ophthalmology, 2019, 126, 1533-1540.	5.2	55
26	BioWordVec,Âimproving biomedical word embeddings with subword information and MeSH. Scientific Data, 2019, 6, 52.	5.3	268
27	Evaluation of Five Sentence Similarity Models on Electronic Medical Records. , 2019, , .		1
28	Overview of the BioCreative VI Precision Medicine Track: mining protein interactions and mutations for precision medicine. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	30
29	BioSentVec: creating sentence embeddings for biomedical texts. , 2019, , .		91
30	Search Effectiveness in Nonredundant Sequence Databases: Assessments and Solutions. Journal of Computational Biology, 2019, 26, 605-617.	1.6	1
31	DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology, 2019, 126, 565-575.	5.2	220
32	A multi-task deep learning model for the classification of Age-related Macular Degeneration. AMIA Summits on Translational Science Proceedings, 2019, 2019, 505-514.	0.4	8
33	Comparative Analysis of Sequence Clustering Methods for Deduplication of Biological Databases. Journal of Data and Information Quality, 2018, 9, 1-27.	2.1	6
34	BioCreative VI Precision Medicine Track system performance is constrained by entity recognition and variations in corpus characteristics. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	4
35	Sentence Similarity Measures Revisited. , 2018, , .		5
36	Duplicates, redundancies and inconsistencies in the primary nucleotide databases: a descriptive study. Database: the Journal of Biological Databases and Curation, 2017, 2017, baw163.	3.0	36

#	Article	IF	CITATIONS
37	Evaluation of CD-HIT for constructing non-redundant databases. , 2016, , .		10
38	Supervised Learning for Detection of Duplicates in Genomic Sequence Databases. PLoS ONE, 2016, 11, e0159644.	2.5	10
39	Evaluation of a Machine Learning Duplicate Detection Method for Bioinformatics Databases. , 2015, , .		17