Horst Biermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284578/publications.pdf

Version: 2024-02-01

253 papers 4,300 citations

31 h-index

147726

50 g-index

262 all docs 262 docs citations

times ranked

262

2460 citing authors

#	Article	IF	Citations
1	Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. International Journal of Fatigue, 2017, 94, 236-245.	2.8	321
2	On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Materials and Design, 2018, 143, 1-11.	3.3	98
3	On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys. Scripta Materialia, 2015, 108, 23-26.	2.6	92
4	Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy: Influence of austenite stability on deformation mechanisms. Acta Materialia, 2013, 61, 2434-2449.	3.8	91
5	Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging. Scripta Materialia, 2011, 64, 513-516.	2.6	89
6	Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 40-50.	2.6	82
7	Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance. Scientific Reports, 2018, 8, 1298.	1.6	76
8	Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime. International Journal of Fatigue, 2016, 84, 40-52.	2.8	75
9	FE investigation of the effect of particle distribution on the uniaxial stress–strain behaviour of particulate reinforced metal-matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 313, 34-45.	2.6	72
10	Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Engineering Fracture Mechanics, 2011, 78, 1684-1695.	2.0	70
11	Effect of austenite stability on the low cycle fatigue behavior and microstructure of high alloyed metastable austenitic cast TRIPsteels. Procedia Engineering, 2010, 2, 2085-2094.	1.2	66
12	Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys — The role of grain orientation. Scripta Materialia, 2016, 114, 156-160.	2.6	61
13	Energyâ€Absorbing TRIPâ€Steel/Mgâ€PSZ Composite Honeycomb Structures Based on Ceramic Extrusion at Room Temperature. International Journal of Applied Ceramic Technology, 2009, 6, 727-735.	1.1	57
14	Deformation mechanisms in austenitic TRIP/TWIP steels at room and elevated temperature investigated by acoustic emission and scanning electron microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 183-193.	2.6	57
15	Cyclic Deformation Behaviour of Three Austenitic Cast CrMnNi TRIP/TWIP Steels with Various Ni Content. Steel Research International, 2011, 82, 1040-1047.	1.0	55
16	SEM Investigation of Highâ€Alloyed Austenitic Stainless Cast Steels With Varying Austenite Stability at Room Temperature and 100°C. Steel Research International, 2012, 83, 512-520.	1.0	50
17	Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2569-2573.	1.1	50
18	Small-scale specimen testing for fatigue life assessment of service-exposed industrial gas turbine blades. International Journal of Fatigue, 2016, 92, 262-271.	2.8	48

#	Article	IF	Citations
19	Estimation of the effective properties of particle-reinforced metal–matrix composites from microtomographic reconstructions. Acta Materialia, 2006, 54, 2735-2744.	3.8	46
20	Load history effects in ductile cast iron for wind turbine components. International Journal of Fatigue, 2007, 29, 1788-1796.	2.8	45
21	Ultrafine grained high-alloyed austenitic TRIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 571, 68-76.	2.6	45
22	A low cycle fatigue model of a short-fibre reinforced 6061 aluminium alloy metal matrix composite. Composites Science and Technology, 2002, 62, 2189-2199.	3.8	42
23	Stability of austenitic 316L steel against martensite formation during cyclic straining. Procedia Engineering, 2011, 10, 1279-1284.	1.2	39
24	Nanoindentation measurements on deformation-induced α'-martensite in a metastable austenitic high-alloy CrMnNi steel. Philosophical Magazine Letters, 2014, 94, 522-530.	0.5	39
25	Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6). Ultrasonics, 2013, 53, 1441-1449.	2.1	38
26	Novel TRIPâ€Steel/Mgâ€PSZ Composite–Open Cell Foam Structures for Energy Absorption. Advanced Engineering Materials, 2010, 12, 197-204.	1.6	36
27	In-situ characterization of the microstructure evolution during cyclic deformation of novel cast TRIP steel. Procedia Engineering, 2010, 2, 1961-1971.	1.2	36
28	Combination of Different In Situ Characterization Techniques and Scanning Electron Microscopy Investigations for a Comprehensive Description of the Tensile Deformation Behavior of a CrMnNi TRIP/TWIP Steel. Jom, 2015, 67, 1729-1747.	0.9	34
29	In-situ monitoring of plasma enhanced nitriding processes using infrared absorption and mass spectroscopy. Surface and Coatings Technology, 2012, 206, 3955-3960.	2.2	33
30	Influence of Martensite Fraction on Tensile Properties of Quenched and Partitioned (Q&P) Martensitic Stainless Steels. Steel Research International, 2016, 87, 1082-1094.	1.0	33
31	Modelling low-cycle fatigue life of particulate-reinforced metal-matrix composites. Materials Science & Sc	2.6	31
32	Microstructure and Compression Strength of Novel TRIPâ€Steel/Mgâ€PSZ Composites. Advanced Engineering Materials, 2009, 11, 1000-1006.	1.6	31
33	Influence of the Chemistry of Surface Functionalized Ceramic Foam Filters on the Filtration of Alumina Inclusions in Steel Melts. Advanced Engineering Materials, 2013, 15, 1188-1196.	1.6	31
34	Biaxial in-phase and out-of-phase cyclic deformation and fatigue behavior of an austenitic TRIP steel. International Journal of Fatigue, 2014, 67, 123-133.	2.8	31
35	Isothermal and thermo-mechanical fatigue behavior of the nickel base superalloy Waspaloyâ,,¢ under uniaxial and biaxial-planar loading. International Journal of Fatigue, 2015, 81, 21-36.	2.8	31
36	Influence of Al on the temperature dependence of strain hardening behavior and glide planarity in Fe–Cr–Ni–Mn–C austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 301-312.	2.6	31

#	Article	IF	Citations
37	The Portevin–Le Châtelier Effect in a Metastable Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 59-74.	1.1	31
38	Thermo-mechanical fatigue behaviour of a modern \hat{I}^3 -TiAl alloy. International Journal of Fatigue, 2008, 30, 352-356.	2.8	30
39	Application of full-surface view in situ thermography measurements during ultrasonic fatigue of cast steel G42CrMo4. International Journal of Fatigue, 2015, 80, 459-467.	2.8	30
40	Determination of Some Parameters for Fatigue Life in Welded Joints Using Fracture Mechanics Method. Journal of Materials Engineering and Performance, 2010, 19, 1225-1234.	1.2	29
41	Microstructure based three-dimensional finite element modeling of particulate reinforced metal–matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 852-856.	2.6	28
42	Case studies on the application of high-resolution electron channelling contrast imaging – investigation of defects and defect arrangements in metallic materials. Philosophical Magazine, 2015, 95, 759-793.	0.7	28
43	Investigation of isothermal and thermo-mechanical fatigue behavior of the nickel-base superalloy IN738LC using standardized and advanced test methods. Materials Science & Diniering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 314-324.	2.6	28
44	Thermo-mechanical fatigue behaviour of the \hat{I}^3 -TiAl alloy TNB-V5. Scripta Materialia, 2006, 54, 137-141.	2.6	27
45	Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Materials Science & Diaxial-planar loading. Materials Science & Diaxial-planar loading. Materials Science & Diaxial-planar loading. Microstructure and Processing, 2015, 642, 317-329.	2.6	27
46	Investigation of Phase Transformations in High-Alloy Austenitic TRIP Steel Under High Pressure (up to) Tj ETQqC Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 95-111.	0 0 0 rgBT / 1.1	Overlock 10 T
47	Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel: Influence of N2-H2 gas composition on structure and properties of expanded austenite. Surface and Coatings Technology, 2019, 357, 1060-1068.	2.2	27
48	Crack observation methods, their application and simulation of curved fatigue crack growth. Engineering Fracture Mechanics, 2010, 77, 2077-2090.	2.0	24
49	Determination of stretch zone width and height by powerful 3D SEM imaging technology. Engineering Fracture Mechanics, 2013, 108, 294-304.	2.0	24
50	Microstructure and mechanical properties of Al-alloyed Fe–Cr–Ni–Mn–C stainless steels. Materials Science &	2.6	24
51	Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic–Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1947-1959.	1.1	24
52	Cyclic deformation behavior of a damage tolerant CrMnNi TRIP steel produced by electron beam melting. International Journal of Fatigue, 2018, 114, 262-271.	2.8	24
53	Comparison of the Stress Intensity Factor of Load-Carrying Cruciform Welded Joints with Different Geometries. Journal of Materials Engineering and Performance, 2010, 19, 802-809.	1.2	23
54	Magnitude of shear of deformation-induced α′-martensite in high-alloy metastable steel. Materials Letters, 2015, 143, 155-158.	1.3	23

#	Article	IF	CITATIONS
55	Spectroscopic investigations of plasma nitriding processes: A comparative study using steel and carbon as active screen materials. Journal of Applied Physics, 2017, 121, 153301.	1.1	23
56	Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel in cold wall reactor: influence of plasma conditions. Journal of Materials Research and Technology, 2020, 9, 9195-9205.	2.6	23
57	Low cycle fatigue crack growth and life prediction of short-fibre reinforced aluminium matrix composites. International Journal of Fatigue, 2003, 25, 209-220.	2.8	22
58	Fatigue behaviour of hot pressed austenitic TWIP steel and TWIP steel/Mg-PSZ composite materials. International Journal of Fatigue, 2014, 65, 9-17.	2.8	22
59	Cyclic Degradation Behavior of \$\$ langle 001 angle \$\$ âŸ˙ 001 ⟩ -Oriented Fe–Mn–Al–Ni Single Crystals in Tension. Shape Memory and Superelasticity, 2017, 3, 335-346.	1.1	22
60	On the temperature dependence of the fatigue and damage behaviour of a particulate-reinforced metal-matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 671-674.	2.6	21
61	Duplex Surface Treatment – Physical Vapor Deposition (PVD) and Subsequent Electron Beam Hardening (EBH). Advanced Engineering Materials, 2014, 16, 511-516.	1.6	21
62	Ductile behavior of fine-grained, carbon-bonded materials at elevated temperatures. Carbon, 2017, 122, 141-149.	5.4	21
63	Cyclic Deformation of Powder Metallurgy Stainless Steel/Mgâ€PSZ Composite Materials. Steel Research International, 2012, 83, 554-564.	1.0	20
64	Fatigue behavior of the nickel-base superalloy Waspaloyâ,,¢ under proportional biaxial-planar loading at high temperature. International Journal of Fatigue, 2014, 67, 212-219.	2.8	20
65	Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT. International Journal of Materials Research, 2012, 103, 87-96.	0.1	19
66	The influence of dilution on dissimilar weld joints with high-alloy TRIP/TWIP steels. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 645-652.	1.3	19
67	Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5771-5777.	1.1	19
68	Fatigue behavior of an ultrafine-grained metastable CrMnNi steel tested under total strain control. International Journal of Fatigue, 2018, 106, 143-152.	2.8	19
69	Review on Strain Localization Phenomena Studied by Highâ∈Resolution Digital Image Correlation. Advanced Engineering Materials, 2021, 23, 2001409.	1.6	19
70	A Novel Approach of Plasma Nitrocarburizing Using a Solid Carbon Active Screen – a Proof of Concept. HTM - Journal of Heat Treatment and Materials, 2017, 72, 254-259.	0.1	19
71	Influence of reinforcement morphology and matrix strength of metal?matrix composites on the cyclic deformation and fatigue behaviour. International Journal of Fatigue, 2002, 24, 215-221.	2.8	18
72	Fatigue Behaviour of Al-Matrix Composites. Advanced Engineering Materials, 2004, 6, 477-485.	1.6	18

#	Article	lF	CITATIONS
73	Corrosion behaviour of stainless steels after low temperature thermochemical treatment. Materialwissenschaft Und Werkstofftechnik, 2010, 41, 133-141.	0.5	18
74	High-temperature small punch test for mechanical characterization of a nickel-base super alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 259-263.	2.6	18
75	Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 84-94.	1.1	18
76	Electron beam welding of CrMnNi-steels: CFD-modeling with temperature sensitive thermophysical properties. International Journal of Heat and Mass Transfer, 2019, 139, 442-455.	2.5	18
77	Novel method for in situ damage monitoring during ultrasonic fatigue testing by the advanced acoustic emission technique. International Journal of Fatigue, 2021, 142, 105918.	2.8	18
78	The influence of the free surface on the fracture of alumina particles in an Al–Al2O3 metal–matrix composite. Computational Materials Science, 2003, 26, 183-188.	1.4	17
79	Observation of stacking faults in a scanning electron microscope by electron channelling contrast imaging. International Journal of Materials Research, 2011, 102, 3-5.	0.1	17
80	Optical in situ investigations of overload effects during fatigue crack growth in nodular cast iron. Engineering Fracture Mechanics, 2012, 95, 45-56.	2.0	17
81	IFHTSE Global 21: heat treatment and surface engineering in the twenty-first century Active screen plasma nitriding and nitrocarburising of steels: an overview. International Heat Treatment and Surface Engineering, 2014, 8, 94-106.	0.2	17
82	Microstructure and Local Strain Fields in a Highâ€Alloyed Austenitic Cast Steel and a Steelâ€Matrix Composite Material after in situ Tensile and Cyclic Deformation. Steel Research International, 2011, 82, 990-997.	1.0	16
83	Thermo-mechanical fatigue behaviour of a duplex stainless steel. International Journal of Fatigue, 2012, 37, 86-91.	2.8	16
84	Microstructure and mechanical properties of fine grained carbon-bonded Al 2 O 3 –C materials. Ceramics International, 2013, 39, 6695-6702.	2.3	16
85	Strength of fine grained carbon-bonded alumina (Al2O3–C) materials obtained by means of the small punch test. Ceramics International, 2014, 40, 9555-9561.	2.3	16
86	The Effect of Weld Profile and Geometries of Butt Weld Joints on Fatigue Life Under Cyclic Tensile Loading. Journal of Materials Engineering and Performance, 2011, 20, 1385-1391.	1.2	15
87	Biaxial Low Cycle Fatigue Behavior and Martensite Formation of a Metastable Austenitic Cast TRIP Steel Under Proportional Loading. Steel Research International, 2011, 82, 1141-1148.	1.0	15
88	Effect of Filter Coating on the Quasiâ€ <scp>S</scp> tatic and Cyclic Mechanical Properties of a G42 <scp>C</scp> r <scp>M</scp> o4 Casting. Advanced Engineering Materials, 2013, 15, 1216-1223.	1.6	15
89	Investigation of fatigue crack growth under in-phase loading as well as phase-shifted loading using cruciform specimens. International Journal of Fatigue, 2019, 124, 595-617.	2.8	15
90	Nitriding behaviour of the intermetallic alloy FeAl. International Journal of Materials Research, 2005, 96, 781-786.	0.8	14

#	Article	IF	CITATIONS
91	Influence of overloads on the fatigue crack growth in nodular cast iron: experiments and numerical simulation. Procedia Engineering, 2010, 2, 1557-1567.	1.2	14
92	Microstructure of austenitic stainless steels of various phase stabilities after cyclic and tensile deformation. International Journal of Materials Research, 2011, 102, 1374-1377.	0.1	14
93	Influence of Composition and Coking Temperature on the Properties and Microstructure of Carbon Bonded Al ₂ <scp>O</scp> ₃ â€" <scp>C</scp> Filter Materials. Advanced Engineering Materials, 2013, 15, 1224-1229.	1.6	14
94	Electron Beam Welding of High Alloy CrMnNi Cast Steels with TRIP/TWIP Effect. Advanced Engineering Materials, 2013, 15, 566-570.	1.6	14
95	Highâ€Temperature Compression Deformation Behavior of Fineâ€Grained Carbonâ€Bonded Alumina. Journal of the American Ceramic Society, 2016, 99, 1390-1397.	1.9	14
96	Effect of Crucible Material for Ingot Casting on Detrimental Nonâ€Metallic Inclusions and the Resulting Mechanical Properties of 18CrNiMo7â€6 Steel. Advanced Engineering Materials, 2017, 19, 1700199.	1.6	14
97	Electron beam welding of Fe–Mn–Al–Ni shape memory alloy: Microstructure evolution and shape memory response. Functional Materials Letters, 2017, 10, 1750043.	0.7	14
98	Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy. Physics of Metals and Metallography, 2018, 119, 388-395.	0.3	14
99	EB Surface Alloying and Plasma Nitriding of Different Al Alloys. Materials Science Forum, 0, 690, 91-94.	0.3	13
100	Thermodynamicâ€∢scp>Mechanical Modeling of Strainâ€∢scp>lnduced α′â€∢scp>Marte Formation in Austenitic Cr–⟨scp>M⟨/scp>n–⟨scp>N⟨/scp⟩i Asâ€∢scp>C⟨/scp>ast Steel. Advanced Engineering Materials, 2013, 15, 609-617.	nsite 1.6	13
101	Investigation of the Damage Behavior of Cast Steel 42 <scp>C</scp> r <scp>M</scp> o4 During Ultrasonic Fatigue by Combination of Thermography and Fractography. Advanced Engineering Materials, 2013, 15, 1251-1259.	1.6	13
102	Electron Beam Welding of Cold Rolled Highâ€Alloy TRIP/TWIP Steel Sheets. Steel Research International, 2016, 87, 436-444.	1.0	13
103	Impact of Nanoengineered Surfaces of Carbonâ€Bonded Alumina Filters on Steel Cleanliness. Advanced Engineering Materials, 2017, 19, 1700153.	1.6	13
104	Crack initiation in the very high cycle fatigue regime of nitrided 42CrMo4 steel. Journal of Materials Research, 2017, 32, 4305-4316.	1.2	13
105	Use of a solid carbon precursor for DC plasma nitrocarburizing of AISI 4140 steel. Vacuum, 2018, 149, 146-149.	1.6	13
106	Martensite formation during tensile deformation of high-alloy TRIP steel after quenching and partitioning route investigated by digital image correlation. Materialia, 2019, 8, 100498.	1.3	13
107	Evaluation of very high cycle fatigue zones in 42CrMo4 steel with plate-like alumina inclusions. International Journal of Fatigue, 2019, 126, 258-269.	2.8	13
108	Mechanical High-Temperature Properties and Damage Behavior of Coarse-Grained Alumina Refractory Metal Composites. Materials, 2019, 12, 3927.	1.3	13

#	Article	IF	CITATIONS
109	Modeling of the cyclic deformation behavior of austenitic TRIP-steels. International Journal of Plasticity, 2020, 133, 102792.	4.1	13
110	Review on Strain Localization Phenomena Studied by Highâ€Resolution Digital Image Correlation. Advanced Engineering Materials, 2021, 23, 2170011.	1.6	13
111	Microstructure of Nonâ€Metallic Inclusions Identified in Cast Steel 42CrMo4 after Metal Melt Filtration by Novel Foam Filters. Steel Research International, 2016, 87, 1038-1053.	1.0	12
112	Volumetric changes associated with B2-(Ni,Fe)Al dissolution in an Al-alloyed ferritic steel. Materials and Design, 2016, 111, 640-645.	3.3	12
113	Microstructural Evolution of an Al-Alloyed Duplex Stainless Steel During Tensile Deformation Between 77 K and 473 K (Ⱂ196°C and 200°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2705-2716.	1.1	12
114	Tempering Reactions and Elemental Redistribution During Tempering of Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3663-3673.	1.1	12
115	Spectroscopic study of plasma nitrocarburizing processes with an industrial-scale carbon active screen. Plasma Sources Science and Technology, 2020, 29, 035001.	1.3	12
116	Effect of Compositional Variation Induced by EBM Processing on Deformation Behavior and Phase Stability of Austenitic Cr-Mn-Ni TRIP Steel. Jom, 2020, 72, 1052-1064.	0.9	12
117	Thermomechanical Fatigue Behavior of the Intermetallic γ-TiAl Alloy TNB-V5 with Different Microstructures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 717-726.	1.1	11
118	<i>In Situ</i> Tensile Deformation of TRIP Steel / Mg-PSZ Composites. Materials Science Forum, 2013, 738-739, 77-81.	0.3	11
119	Cluster Detection of Nonâ€Metallic Inclusions in 42CrMo4 Steel. Steel Research International, 2018, 89, 1800216.	1.0	11
120	Impact of Al addition on deformation behavior of Fe–Cr–Ni–Mn–C austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140084.	2.6	11
121	Ultrasonic fatigue testing of cast steel G42CrMo4 at elevated temperatures. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2455-2475.	1.7	11
122	In-line Process Control in the Active Screen Plasma Nitrocarburizing Using a Combined Approach Based on Infrared Laser Absorption Spectroscopy and Bias Power Management*. HTM - Journal of Heat Treatment and Materials, 2016, 71, 141-147.	0.1	11
123	Synthesis of Niobium-Alumina Composite Aggregates and Their Application in Coarse-Grained Refractory Ceramic-Metal Castables. Materials, 2021, 14, 6453.	1.3	11
124	Non-cube-on-cube orientation relationship between M23C6 and austenite in an austenitic stainless steel. Scripta Materialia, 2022, 213, 114597.	2.6	11
125	Progress in control of nitriding potential in ASPN process. International Heat Treatment and Surface Engineering, 2014, 8, 139-143.	0.2	10
126	Effects of electron beam treatment on Ti(1â^'x)AlxN coatings on steel. Vacuum, 2014, 107, 141-144.	1.6	10

#	Article	IF	CITATIONS
127	Tensile elongation of lean-alloy austenitic stainless steels: Transformation-induced plasticity versus planar glide. Materials Science and Technology, 2017, 33, 1224-1230.	0.8	10
128	Spectroscopic investigations of plasma nitrocarburizing processes using an active screen made of carbon in a model reactor. Plasma Sources Science and Technology, 2018, 27, 075017.	1.3	10
129	On the origin of subgrain boundaries during conventional solidification of austenitic stainless steels. IOP Conference Series: Materials Science and Engineering, 2018, 373, 012005.	0.3	10
130	Manufacturing Fe–TiC Composite Powder via Inert Gas Atomization by Forming Reinforcement Phase In Situ. Advanced Engineering Materials, 2021, 23, 2000717.	1.6	10
131	Effect of Nitriding Potential KN on the Formation and Growth of a "White Layer―on Iron Aluminide Alloy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021 52: 414-424 in situ characterization of the functional degradation of a <mml:math< td=""><td>1.0</td><td>10</td></mml:math<>	1.0	10
132	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mn>00</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo>Â⁻</mml:mo></mml:mover></mml:mrow><mml:mo>]</mml:mo>jjj</mml:mrow>	10> ³ { mml:	mrow>
133	Acta Materialia 2021 220 117333 Influence of Matrix Strength and Volume Fraction of Mgâ€ <scp>PSZ</scp> on the Cyclic Deformation Behavior of Hot Pressed <scp>TRIP</scp> / <scp>TWIP</scp> â€ <scp>M</scp> atrix Composite Materials. Advanced Engineering Materials, 2013, 15, 550-557.	1.6	9
134	Influence of particle and short-fibre reinforcement on the very high cycle fatigue behaviour of aluminium matrix composites. International Journal of Fatigue, 2018, 113, 299-310.	2.8	9
135	On the influence of carbon contamination of reactor parts in active screen plasma nitrocarburizing processes. Journal of Applied Physics, 2018, 123, .	1.1	9
136	Influence of the Active Screen Plasma Power during Afterglow Nitrocarburizing on the Surface Modification of AISI 316L. Coatings, 2020, 10, 1112.	1.2	9
137	Recycling of carbon fiber composites in carbon-bonded alumina refractories. Ceramics International, 2020, 46, 12574-12583.	2.3	9
138	Microstructural and mechanical characterization of high-alloy quenching and partitioning TRIP steel manufactured by electron beam melting. Materials Science & Description of the Science and Processing, 2020, 794, 139684.	2.6	9
139	Ultrafine-grained CrMnNi steels: Lueders phenomenon and texture inheritance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140197.	2.6	9
140	Manufacture of carbon-bonded alumina based on a lactose-tannin binder system via slip casting. Ceramics International, 2022, 48, 148-156.	2.3	9
141	Very High Cycle Fatigue Investigations on the Fatigue Strength of Additive Manufactured and Conventionally Wrought Inconel 718 at 873 K. Metals, 2021, 11, 1682.	1.0	9
142	Deformation behaviour of TWIP steels: Constitutive modelling informed by local and integral experimental methods used in concert. Materials Characterization, 2022, 184, 111667.	1.9	9
143	On the identification of an effective cross section for a cruciform specimen. Strain, 2018, 54, e12257.	1.4	8
144	Laminated TRIP/TWIP Steel Composites Produced by Roll Bonding. Metals, 2019, 9, 195.	1.0	8

#	Article	IF	Citations
145	Thermal Analysis of the Formation and Dissolution of Crâ€Rich Carbides in Alâ€Alloyed Stainless Steels. Advanced Engineering Materials, 2019, 21, 1800658.	1.6	8
146	Validation of an experimental-numerical approach for the high temperature behaviour of open-cell ceramic foams. Journal of the European Ceramic Society, 2019, 39, 610-617.	2.8	8
147	Effect of Filter Functional Coating on Detrimental Nonmetallic Inclusions in 42CrMo4 Steel and Its Resulting Mechanical Properties. Advanced Engineering Materials, 2020, 22, 1900540.	1.6	8
148	Tailoring Nonmetallic Inclusions in 42CrMo4 as a Preparative Tool for Active and Reactive Steel Melt Filtration. Advanced Engineering Materials, 2022, 24, 2100640.	1.6	8
149	Kontrolliertes Plasmanitrieren von StÄ ¤ len mit einem Aktivgitter. HTM - Journal of Heat Treatment and Materials, 2013, 68, 124-132.	0.1	8
150	Plasma Nitrocarburizing of AISI 316L Austenitic Stainless Steel Applying a Carbon Active Screen: Status and Perspectives. HTM - Journal of Heat Treatment and Materials, 2018, 73, 246-257.	0.1	8
151	Highâ€√emperature Compressive Behavior of Refractory Alumina–Niobium Composite Material. Advanced Engineering Materials, 2022, 24, .	1.6	8
152	Static and Cyclic Deformation Behavior of the Ferritic Steel 16Mo3 Under Monotonic and Cyclic Loading at High Temperatures. Steel Research International, 2012, 83, 631-636.	1.0	7
153	Scanning and transmission electron microscopy investigations of defect arrangements in a two-phase \hat{I}^3 -TiAl alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 571, 49-56.	2.6	7
154	Thermo mechanical fatigue behaviour of a duplex stainless steel in the range of 350–600°C. International Journal of Fatigue, 2014, 65, 2-8.	2.8	7
155	Electron beam hardening of PVD-coated steels — Improved load-supporting capacity for Ti1â^'xAlxN layers. Surface and Coatings Technology, 2015, 283, 201-209.	2.2	7
156	Isothermal and thermo-mechanical fatigue behavior of 16Mo3 steel coated with high-velocity oxy-fuel sprayed nickel-base alloy under uniaxial as well as biaxial-planar loading. Journal of Materials Research, 2017, 32, 4411-4423.	1.2	7
157	Strain Hardening of Phases in Highâ€Alloy CrMnNi Steel as a Consequence of Preâ€Deformation Studied by Nanoindentation. Advanced Engineering Materials, 2019, 21, 1800801.	1.6	7
158	Characterization of Nonmetallic Inclusions in 18CrNiMo7-6. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 337-356.	1.0	7
159	Crack growth behaviour in biaxial stress fields: Calculation of K-factors for cruciform specimens. Theoretical and Applied Fracture Mechanics, 2020, 107, 102521.	2.1	7
160	Cyclic stress-strain and fatigue behaviour of particulate-reinforced Al-matrix composites. , 1998, , 431-436.		7
161	Fracture mechanics testing and crack growth simulation of highly ductile austenitic steel. Materialpruefung/Materials Testing, 2018, 60, 341-348.	0.8	7
162	Influence of C and N on Strain-Induced Martensite Formation in Fe-15Cr-7Mn-4Ni-0.5Si Austenitic Steel. Materials, 2021, 14, 6502.	1.3	7

#	Article	IF	CITATIONS
163	Coarseâ€Grained Refractory Composite Castables Based on Alumina and Niobium. Advanced Engineering Materials, 2022, 24, .	1.6	7
164	Mechanical properties of metal matrix composites based on TRIP steel and ZrO2 ceramic foams. Procedia Engineering, 2011, 10, 548-555.	1.2	6
165	Stress Induced Phase Transformations in TRIP-Steel / Mg-PSZ Composites. Solid State Phenomena, 0, 172-174, 709-714.	0.3	6
166	Deformation and microstructure evolution of a duplex stainless steel under out-of-phase thermo-mechanical fatigue. Materials at High Temperatures, 2013, 30, 77-82.	0.5	6
167	Decomposition and Precipitation Process During Thermo-mechanical Fatigue of Duplex Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2112-2124.	1.1	6
168	Fatigue behaviour of 16Mo3 steel at elevated temperatures under uniaxial as well as biaxialâ€planar loading. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 909-923.	1.7	6
169	Influence of Si addition on the carbon partitioning process in martensitic-austenitic stainless steels. IOP Conference Series: Materials Science and Engineering, 2018, 373, 012001.	0.3	6
170	Fatigue Crack Growth in Austenitic Stainless Steel: Effects of Phase Shifted Loading and Crack Paths. Advanced Engineering Materials, 2019, 21, 1800861.	1.6	6
171	On the formation of ridges and burnished debris along internal fatigue crack propagation in 42CrMo4 steel. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1567-1582.	1.7	6
172	Aluminum-alloyed lightweight stainless steels strengthened by B2-(Ni,Fe)Al precipitates. Materials and Design, 2021, 206, 109813.	3.3	6
173	Effects of Plasma-Chemical Composition on AISI 316L Surface Modification by Active Screen Nitrocarburizing Using Gaseous and Solid Carbon Precursors. Metals, 2021, 11, 1411.	1.0	6
174	Untersuchung des Korrosionsverhaltens von nichtrostenden StÄ ¤ len nach einer thermochemischen Behandlung bei tiefen Temperaturen. HTM - Journal of Heat Treatment and Materials, 2008, 63, 342-350.	0.1	6
175	Highâ€Temperature Ternary Oxide Phases in Tantalum/Niobium–Alumina Composite Materials. Advanced Engineering Materials, 2022, 24, .	1.6	6
176	A statistical model of fatigue damage evolution in particulate-reinforced metal-matrix-composites. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23, 847-858.	1.7	5
177	Investigation of Stress Induced Phase Transformation in TRIPâ€Steel/Mgâ€PSZ Composites Using EBSD. Advanced Engineering Materials, 2011, 13, 1037-1041.	1.6	5
178	Investigation of cracking prevention in magnetron-sputtered TiAlN coatings during subsequent electron beam hardening. Surface and Coatings Technology, 2018, 338, 75-83.	2.2	5
179	Electron Beam Welding and Characterization of Dissimilar Joints with TWIP Matrix Composites. Advanced Engineering Materials, 2019, 21, 1800586.	1.6	5
180	Microstructural and Mechanical Characterization of Squareâ€Celled TRIP Steel Honeycomb Structures Produced by Electron Beam Melting. Advanced Engineering Materials, 2020, 22, 2000037.	1.6	5

#	Article	lF	CITATIONS
181	Fatigue of carburised CrNiMo steel: Testing and modelling concept. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 788-804.	1.7	5
182	The role of grain size in static and cyclic deformation behaviour of a laser reversion annealed metastable austenitic steel. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 43-62.	1.7	5
183	Impact of high temperature on the compression behavior of carbon-bonded alumina filters with functionalized coatings. Ceramics International, 2021, 47, 3920-3927.	2.3	5
184	Microstructural evolution of the bonding zone in TRIP-TWIP laminate produced by accumulative roll bonding. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142866.	2.6	5
185	Low-cycle fatigue of a metal-matrix composite: Influence of pre-straining on the fatigue life. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 198-201.	2.6	4
186	Microstructure Evolution and Phase Transformation in a Novel High-Alloyed TRIP Steel Observed during <i>in-Situ</i> Tensile and Cyclic Deformation. Key Engineering Materials, 0, 465, 350-353.	0.4	4
187	Fatigue crack initiation and damage mechanisms during ultrasonic fatigue testing of cast aluminium alloy AlSi7Mg. MATEC Web of Conferences, 2014, 12, 10005.	0.1	4
188	Texture evolution of cold rolled and reversion annealed metastable austenitic CrMnNi steels. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012069.	0.3	4
189	Prediction of High Temperature Behavior of Openâ€Cell Ceramic Foams Using an Experimentalâ€Numerical Approach. Advanced Engineering Materials, 2017, 19, 1700082.	1.6	4
190	Cyclic Deformation Behavior of an Ultraâ∈High Strength Austeniticâ∈Martensitic Steel Treated by Novel Q&P Processing. Advanced Engineering Materials, 2019, 21, 1800732.	1.6	4
191	Determining the Damage and Failure Behaviour of Textile Reinforced Composites under Combined In-Plane and Out-of-Plane Loading. Materials, 2020, 13, 4772.	1.3	4
192	Sliding wear behavior of duplex coatings with different plasma nitride layers and a <scp>Crâ€Al‶iâ€Bâ€N </scp> coating. Engineering Reports, 2022, 4, e12377.	0.9	4
193	Acoustic emission measurements on metastable austenitic steel oligocrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142066.	2.6	4
194	Collaborative Research Center TRIP-Matrix-Composite. , 2009, , .		4
195	Low cycle fatigue behavior and microstructure of a high alloyed metastable austenitic cast TRIP-steel. , 2009, , .		4
196	Influence of Oxygen Admixture on Plasma Nitrocarburizing Process and Monitoring of an Active Screen Plasma Treatment. Applied Sciences (Switzerland), 2021, 11, 9918.	1.3	4
197	Low-cycle fatigue behaviour and microstructure of copper and alpha-brass under biaxial load paths. Journal of Physics: Conference Series, 2010, 240, 012042.	0.3	3
198	Influence of Reinforcement Geometry on the Very High-Cycle Fatigue Behavior of Aluminium-Matrix-Composites. Materials Science Forum, 0, 825-826, 150-157.	0.3	3

#	Article	IF	CITATIONS
199	Influence of Mg-PSZ Particle Size on the Fatigue Behaviour of a High Alloy Steel Matrix Composite. Materials Science Forum, 0, 825-826, 176-181.	0.3	3
200	Application of a Modified Stressâ^'Strain Approach for the Fatigueâ€Life Prediction of a Ferritic, an Austenitic and a Ferritic–Austenitic Duplex Steel under Isothermal and Thermoâ€Mechanical Fatigue. Steel Research International, 2016, 87, 1095-1104.	1.0	3
201	A new method for manufacturing graded refractories by localized hot uniaxial pressing. Ceramics International, 2017, 43, 14636-14641.	2.3	3
202	The influence of the nitrogen/nickelâ€ratio on the cyclic behavior of austenitic high strength steels with twinningâ€induced plasticity and transformationâ€induced plasticity effects. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 61-72.	0.5	3
203	Numerical Simulation of the Particle Displacement during Electron Beam Welding of a Dissimilar Weld Joint with TRIPâ€Matrixâ€Composite. Advanced Engineering Materials, 2019, 21, 1800741.	1.6	3
204	Influence of Carbon Nanotubesâ€Based Coatings on the Highâ€Temperature Compression Strength of Al 2 O 3 â€C Foam Filter Structures. Advanced Engineering Materials, 2020, 22, 1900423.	1.6	3
205	Neutron diffraction analysis of stress and strain partitioning in a two-phase microstructure with parallel-aligned phases. Scientific Reports, 2020, 10, 13536.	1.6	3
206	The fatigue life of 42CrMo4 steel in the range of HCF to VHCF at elevated temperatures up to 773 K. International Journal of Fatigue, 2021, 152, 106437.	2.8	3
207	Untersuchungen zum Plasmanitrieren von StÄ H len mit einem Aktivgitter*. HTM - Journal of Heat Treatment and Materials, 2011, 66, 127-134.	0.1	3
208	Biaxial fatigue behavior of a powder metallurgical TRIP steel. Frattura Ed Integrita Strutturale, 2016, , .	0.5	3
209	MMC aus TRIP-Stahl und MgO Teilstabilisiertem ZrO2 Durch Bildsame Formgebung., 0,, 147-154.		2
210	Tensile Behavior of Cast and Electron Beam Welded Interstitially Strengthened High-Alloy TRIP Steel. Steel Research International, 2016, 87, 1627-1637.	1.0	2
211	Functionally Graded High-Alloy CrMnNi TRIP Steel Produced by Local Heat Treatment Using High-Energy Electron Beam. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 123-138.	1.1	2
212	Very high cycle fatigue behaviour of 42CrMo4 steel with plate-like alumina inclusions. Procedia Structural Integrity, 2018, 13, 2071-2076.	0.3	2
213	Joining of TWIP-matrix composites by electron beam brazing. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 19-27.	1.3	2
214	TRIPâ€Matrixâ€Composites. Advanced Engineering Materials, 2019, 21, 1900126.	1.6	2
215	Microstructure and adhesion characteristics of duplex coatings with different plasmaâ€nitrided layers and a Crâ€Alâ€Tiâ€Bâ€N physical vapor deposition coating. Engineering Reports, 0, , e12364.	0.9	2
216	Plasma Nitrocarburizing of AISI 316L Austenitic Stainless Steel: a First Step for Treatment of Components with Complex Geometries. HTM - Journal of Heat Treatment and Materials, 2020, 75, 95-112.	0.1	2

#	Article	IF	CITATIONS
217	Mechanical Behavior and Fatigue Properties of Metal-matrix Composites. , 2006, , 173-196.		1
218	Thermo-Mechanical Fatigue Behaviour of the Gamma-Titanium Aluminide TNB-V5 with Near-Gamma Microstructure. Materials Science Forum, 2007, 539-543, 1559-1564.	0.3	1
219	Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures. Journal of Physics: Conference Series, 2010, 240, 012046.	0.3	1
220	Kinetics of Deformation Processes in a High-Alloy Cast TWIP Steel Determined by Acoustic Emission and Scanning Electron Microscopy. Key Engineering Materials, 0, 592-593, 489-492.	0.4	1
221	A Comparative Study on Infrared Thermography during Ultrasonic Fatigue Testing of Cast Steel 42CrMo4 and Cast Aluminium Alloy AlSi7Mg. Key Engineering Materials, 0, 592-593, 501-504.	0.4	1
222	Numerical and Experimental Sensitivity Analysis for the Determination of Casting Parameter–Microstructure–Property Relations and Mechanical Properties of IN738LC in Investment Casting. Advanced Engineering Materials, 2014, 16, 1217-1225.	1.6	1
223	Portevin Le Chatelier Effect in a Metastable Austenitic CrMnNi Steel. Materials Today: Proceedings, 2015, 2, S623-S626.	0.9	1
224	Quality of dissimilar welded particle-reinforced TRIP/TWIP steels generated by electron beam braze-welding. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 1655-1667.	1.3	1
225	Compression Behavior of Carbonâ€Bonded Alumina Spaghetti Filters at Room and High Temperatures. Advanced Engineering Materials, 0, , 2100613.	1.6	1
226	Direct tuning of the microstructural and mechanical properties of high-alloy austenitic steel by electron beam melting. Additive Manufacturing, 2021, 47, 102253.	1.7	1
227	Scanning Electron Microscopy and Complementary In Situ Characterization Techniques for Characterization of Deformation and Damage Processes. Springer Series in Materials Science, 2020, , 485-527.	0.4	1
228	Investigations of Electron Beam Hardening on TiAlN Coated Heat-Ã,"Treatable Steel. Materials Performance and Characterization, 2017, 6, 850-859.	0.2	1
229	Erhöhung der tribologischen Beanspruchbarkeit von Aluminiumwerkstoffen durch die Kombination von Randschichtumschmelzlegieren und Nitrieren. HTM - Journal of Heat Treatment and Materials, 2012, 67, 13-21.	0.1	1
230	Crack growth behavior of aluminum alloy 6061 T651 under uniaxial and biaxial planar testing condition. Frattura Ed Integrita Strutturale, 2016, , .	0.5	1
231	Cruciform specimens used for determination of the influence of T-stress on fatigue crack growth with overloads on aluminum alloy Al 6061 T651. Frattura Ed Integrita Strutturale, 2019, 13, 135-143.	0.5	1
232	Comparative Studies on Electron Beam and Laser Beam Welding of QT-Steel and Structural Steel. HTM - Journal of Heat Treatment and Materials, 2019, 74, 331-341.	0.1	1
233	Experimental and Numerical Investigation of High-Temperature Multi-Axial Fatigue. Journal of Engineering for Gas Turbines and Power, 2022, 144, .	0.5	1
234	Planarâ€biaxial lowâ€cycle fatigue behavior of the nickelâ€base alloy Inconel 718 at elevated temperatures under selected loading conditions. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 1571-1586.	1.7	1

#	Article	IF	Citations
235	Effect of N2â€"H2 Ratio during Conventional Plasma Nitriding of Intermetallic FeAl40 Alloy on Electrochemical Corrosion Parameters in Sulphuric Acid. Metals, 2022, 12, 649.	1.0	1
236	Nitriding behaviour of the intermetallic alloy FeAl. International Journal of Materials Research, 2022, 96, 781-786.	0.1	1
237	Editorial TRIPâ€Matrix Composites. Steel Research International, 2011, 82, 983-984.	1.0	0
238	Spectroscopic investigations of plasma nitriding processes: A comparative study using steel and carbon as active screen materials. , 2017 , , .		0
239	Development of a novel testing device for fabric reinforced carbon fibre composites under cyclic biaxial load applications. IOP Conference Series: Materials Science and Engineering, 2018, 388, 012019.	0.3	0
240	On the Potential of Using the Small Punch Test for the Characterization of SMA Behavior Under Multi-Axial Loading Conditions. , 2018, , .		0
241	Influence of ceramic particles and fibre reinforcement in metal matrix composites on the VHCF behaviour. Part II: Stochastic modelling and statistical inference., 2018,, 319-342.		0
242	Cruciform specimens for the determination of crack growth behaviour in biaxial stress fields: calculation of K-factors. MATEC Web of Conferences, 2019, 300, 11008.	0.1	0
243	Influence of the local degree of deformation on the temperature dependent fatigue behaviour of a ferritic–pearlitic steel. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2786-2799.	1.7	0
244	Influence of elevated temperature and reduced pressure on the degradation of iron nitride compound layer formed by plasma nitriding in <scp>AISI D2</scp> tool steels. Engineering Reports, 2022, 4, e12371.	0.9	0
245	Effect of nitriding preâ€treatment on the tribocorrosion behavior of physical vapor depositionâ€coated tool steel. Engineering Reports, 2022, 4, e12382.	0.9	0
246	Residual properties of carbonâ€bonded alumina foam filter coated with carbonâ€containing calcium aluminate after contact with steel melt. Advanced Engineering Materials, 0, , 2100642.	1.6	0
247	Spectroscopic investigations of plasma nitriding processes using an active screen made of carbon in a model reactor., 2018,,.		0
248	Cyclic Crack Growth in Chemically Tailored Isotropic Austenitic Steel Processed by Electron Beam Powder Bed Fusion. Materials, 2021, 14, 6544.	1.3	0
249	Cyclic Deformation and Fatigue Behavior of Metastable Austenitic Steels and Steel-Matrix-Composites. Springer Series in Materials Science, 2020, , 413-449.	0.4	0
250	Behaviour of Metastable and Stable Austenitic Stainless Steels Under Planar-Biaxial Load. Springer Series in Materials Science, 2020, , 451-483.	0.4	0
251	Electron Beam Technologies for the Joining of High Alloy TRIP/TWIP Steels and Steel-Matrix Composites. Springer Series in Materials Science, 2020, , 283-323.	0.4	0
252	Plasma Nitrocarburizing of AISI 316L Austenitic Stainless Steel: a First Step for Treatment of Components with Complex Geometries. HTM - Journal of Heat Treatment and Materials, 2020, 75, 95-112.	0.1	0

#	Article	IF	CITATIONS
253	Deformation Lenses in a Bonding Zone of High-Alloyed Steel Laminates Manufactured by Cold Roll Bonding. Metals, 2022, 12, 590.	1.0	0