Jea-Young Leem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284564/publications.pdf

Version: 2024-02-01

110 papers	773 citations	687220 13 h-index	713332 21 g-index
112	112	112	910
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28809-28815.	4.0	47
2	Structural and blue emission properties of Al-doped ZnO nanorod array thin films grown by hydrothermal method. Electronic Materials Letters, 2012, 8, 445-450.	1.0	46
3	Crystallization of ZnO thin films via thermal dissipation annealing method for high-performance UV photodetector with ultrahigh response speed. Scientific Reports, 2021, 11, 382.	1.6	29
4	White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite. Journal of Sol-Gel Science and Technology, 2011, 59, 364-370.	1.1	27
5	Effects of cooling rate and post-heat treatment on properties of ZnO thin films deposited by sol–gel method. Applied Surface Science, 2011, 257, 9019-9023.	3.1	27
6	Evaluation of the junction's electric field and the ideality factor of GaAs p-n junction solar cells by using photoreflectance spectroscopy. Journal of the Korean Physical Society, 2014, 64, 1031-1035.	0.3	21
7	Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods. Bulletin of the Korean Chemical Society, 2013, 34, 3335-3339.	1.0	20
8	Effects of buffer layer thickness on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy. Vacuum, 2012, 86, 1373-1379.	1.6	19
9	Effects of growth temperature for buffer layers on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy. Optical Materials, 2012, 34, 1543-1548.	1.7	17
10	Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method. Electronic Materials Letters, 2013, 9, 293-298.	1.0	17
11	Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111). Scientific Reports, 2015, 5, 16652.	1.6	16
12	Growth and characterization of seed layer-free ZnO thin films deposited on porous silicon by hydrothermal method. Electronic Materials Letters, 2012, 8, 75-80.	1.0	15
13	Hydrothermally grown boron-doped ZnO nanorods for various applications: Structural, optical, and electrical properties. Electronic Materials Letters, 2014, 10, 81-87.	1.0	15
14	Laser-assisted sol-gel growth and characteristics of ZnO thin films. Applied Physics Letters, 2012, 100, 252108.	1.5	13
15	Hydrothermal growth and properties of rod-like ZnO submicron crystals on Al-doped ZnO seed layers with different Al concentrations. Journal of the Korean Physical Society, 2012, 60, 94-98.	0.3	13
16	Effects of annealing atmosphere and temperature on properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy. Electronic Materials Letters, 2012, 8, 123-129.	1.0	13
17	Influence of annealing temperature on photoluminescence properties and optical constants of N-doped ZnO thin films grown on muscovite mica substrates. Physica B: Condensed Matter, 2015, 476, 71-76.	1.3	13
18	Structural, optical, and electrical properties of ZnO thin films deposited by sol-gel dip-coating process at low temperature. Electronic Materials Letters, 2014, 10, 869-878.	1.0	12

#	Article	IF	Citations
19	Optical and electrical properties of InAs/GaAs quantum-dot solar cells. Journal of the Korean Physical Society, 2014, 64, 895-899.	0.3	12
20	Studies on temperature- and excitation-power-dependent photoluminescence of ZnO thin film grown by plasma-assisted molecular beam epitaxy. Current Applied Physics, 2013, 13, S168-S171.	1.1	11
21	Facile Synthesis and Enhanced Ultraviolet Emission of ZnO Nanorods Prepared by Vapor-Confined Face-to-Face Annealing. ACS Applied Materials & Samp; Interfaces, 2015, 7, 873-879.	4.0	11
22	Enhancement of the Ultraviolet Photoresponsivity of Al-doped ZnO Thin Films Prepared by using the Sol-gel Spin-coating Method. Journal of the Korean Physical Society, 2018, 72, 610-614.	0.3	11
23	Effects of precursor concentrations on ZnO nano-fibrous thin films grown by using the sol-gel dip-coating method. Journal of the Korean Physical Society, 2012, 61, 1925-1931.	0.3	10
24	Improved optical and electrical properties of sol–gel-derived boron-doped zinc oxide thin films. Journal of Sol-Gel Science and Technology, 2013, 67, 580-591.	1.1	10
25	A novel regrowth mechanism and enhanced optical properties of Mg _{0.25} Zn _{0.75} O nanorods subjected to vapor-confined face-to-face annealing. Journal of Materials Chemistry C, 2014, 2, 9918-9923.	2.7	10
26	Optical stability of shape-engineered InAs/InAlGaAs quantum dots. Journal of Applied Physics, 2009, 105, 053510.	1.1	9
27	Photoluminescence studies of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy. Current Applied Physics, 2012, 12, S94-S98.	1.1	9
28	Growth and optical characteristics of Mg-doped GaAs epitaxial layers by molecular beam epitaxy. Microelectronic Engineering, 2012, 89, 6-9.	1.1	9
29	Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating. Journal of the Korean Physical Society, 2014, 65, 480-486.	0.3	9
30	K-doping effects on the characteristics of ZnO thin films synthesized by using a spin-coating method. Journal of the Korean Physical Society, 2014, 64, 1581-1585.	0.3	9
31	Investigation of internal electric fields in GaAs solar cell under highly-concentrated light. Journal of the Korean Physical Society, 2015, 66, 667-671.	0.3	9
32	Size Control of ZnO Nanorods Using the Hydrothermal Method in Conjunction with Substrate Rotation. Journal of Nanoscience and Nanotechnology, 2017, 17, 7952-7956.	0.9	9
33	Crystallization of ZnO thin films without polymer substrate deformation <i>via</i> thermal dissipation annealing method for next generation wearable devices. RSC Advances, 2021, 11, 876-882.	1.7	9
34	Fabrication of coupled GaAs quantum dots and their optical properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 802-805.	0.8	8
35	Effects of in doping on structural and optical properties of ZnO nanorods grown by hydrothermal method. Electronic Materials Letters, 2013, 9, 509-512.	1.0	8
36	Evaluation of the photo-generated carrier density of GaAs solar cells by using electrical and optical biased electroreflectance spectroscopy. Journal of the Korean Physical Society, 2015, 67, 723-727.	0.3	7

#	Article	IF	CITATIONS
37	Effect of a Sn seed layer and ZnCl2 concentration on electrodeposited ZnO nanostructures. Journal of the Korean Physical Society, 2015, 66, 1253-1258.	0.3	7
38	Influence of Al-, Co-, Cu-, and In-doped ZnO buffer layers on the structural and the optical properties of ZnO thin films. Journal of the Korean Physical Society, 2015, 66, 224-228.	0.3	7
39	Effect of post-annealing temperature on structural and optical properties of ZnO thin films grown on mica substrates using sol-gel spin-coating. Journal of the Korean Physical Society, 2015, 67, 870-874.	0.3	7
40	Effects of Precursor Concentrations and Thermal Annealing on ZnO Nanorods Grown by Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 7479-7482.	0.9	6
41	Effects of growth conditions on the structural and the optical properties of ZnO submicron particles grown by using vapor phase transport. Journal of the Korean Physical Society, 2012, 60, 1599-1604.	0.3	6
42	Enhanced optical and electrical properties of boron-doped zinc-oxide thin films prepared by using the sol-gel dip-coating method. Journal of the Korean Physical Society, 2013, 63, 1804-1808.	0.3	6
43	Effects of Ga concentration on the structural, electrical and optical properties of Ga-doped ZnO thin films grown by sol-gel method. Journal of the Korean Physical Society, 2014, 64, 109-113.	0.3	6
44	Optical, Electrical, and UV Photoresponse Properties of Fluorine-Doped ZnO Thin Films Grown on Flexible Mica Substrates. Journal of Electronic Materials, 2015, 44, 4717-4721.	1.0	6
45	Transparent and flexible ZnO nanorods induced by thermal dissipation annealing without polymer substrate deformation for next-generation wearable devices. RSC Advances, 2021, 11, 17538-17546.	1.7	6
46	Carrier repopulation process for spatially-ordered InAs/InAlGaAs quantum dots. Journal of Applied Physics, 2011, 109, 113505.	1.1	5
47	Effects of post-heat-treatment temperature for seed layers on the properties of ZnO nanostructures grown by using the hydrothermal method. Journal of the Korean Physical Society, 2012, 60, 1593-1598.	0.3	5
48	Optimizing the optical properties of fluorine-doped ZnO thin films deposited by sol-gel spin-coating. Journal of the Korean Physical Society, 2014, 65, 509-514.	0.3	5
49	Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon. Electronic Materials Letters, 2014, 10, 565-571.	1.0	5
50	Synthesis and fast-response of a photodetector of hydrothermally grown ZnO nanorods through the use of a graphene oxide/ZnO seed layer. RSC Advances, 2015, 5, 94222-94226.	1.7	5
51	Facile synthesis and an effective doping method for ZnO:In 3+ nanorods with improved optical properties. Journal of Alloys and Compounds, 2015, 651, 1-7.	2.8	5
52	Effect of the pH of an Aqueous Solution on the Structural, Optical, and Photoresponse Properties of Hydrothermally Grown ZnO Nanorods and the Fabrication of a High Performance Ultraviolet Sensor. Journal of the Korean Physical Society, 2018, 72, 400-405.	0.3	5
53	Improving of the Rise and Decay Rates of an Ultraviolet Photodetector Using Stepwise Annealed ZnO Nanorods. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800929.	0.8	5
54	Morphology changes of In-doped ZnO nanosheets via ZnCl2 and InCl3 vapor formation during thermal dissipation annealing process and improved UV photoresponse properties. Journal of Alloys and Compounds, 2021, 877, 160241.	2.8	5

#	Article	IF	CITATIONS
55	Modified interfaces of ZnO thin films through MoS2 addition in precursor solution for MoS2/ZnO heterojunctions and their enhanced ultraviolet photodetection properties. Journal of Alloys and Compounds, 2022, 905, 164168.	2.8	5
56	Piezoelectric fields of localized states in trapezoidal InGaN quantum wells. Journal of Applied Physics, 2010, 108, 083110.	1.1	4
57	Optical parameters of Mg x Zn1â^'x O thin films prepared by using the sol-gel method. Journal of the Korean Physical Society, 2012, 60, 830-835.	0.3	4
58	Oxygen plasma power dependence on ZnO grown on porous silicon substrates by plasma-assisted molecular beam epitaxy. Materials Research Bulletin, 2012, 47, 2879-2883.	2.7	4
59	Counterpoise-assisted annealing effects on enhanced photoluminescence and electrical properties of sol–gel-derived ZnO thin films grown on polyimide substrates. Materials Chemistry and Physics, 2015, 167, 18-21.	2.0	4
60	Effect of Zn Nitrate Hexahydrate Concentration on ZnO Nanorods Grown from an Electrochemically Oxidized ZnO Seed Layer. Journal of the Korean Physical Society, 2018, 72, 1364-1368.	0.3	4
61	Morphology Effect of 1D ZnO Nanostructures Designed by Hydrothermal and Thermal Annealing for Fast Ultraviolet Photodetector Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900946.	0.8	4
62	Optimal temperature of the sol–gel solution used to fabricate high-quality ZnO thin films via the dip-coating method for highly sensitive UV photodetectors. Journal of the Korean Physical Society, 2021, 78, 504-509.	0.3	4
63	Morphology modification of ZnO nanosheets and ZnO nanorods via thermal dissipation system for UV photoresponse improvement. Materials Science in Semiconductor Processing, 2022, 138, 106286.	1.9	4
64	Synthesis of interface modified MoS2/ZnO heterostructure via simple hydrothermal method and their enhanced UV photodetection characteristics with ultrafast photoresponse speed. Materials Research Bulletin, 2022, 150, 111767.	2.7	4
65	Optical Properties of ZnO Soccer-Ball Structures Grown by Vapor Phase Transport. Japanese Journal of Applied Physics, 2012, 51, 021102.	0.8	3
66	Temperature dependence of the optical properties of high-density GaAs quantum dots. Journal of the Korean Physical Society, 2012, 60, 1428-1432.	0.3	3
67	Fabrication and photoluminescence studies of porous ZnO nanorods. Journal of the Korean Physical Society, 2012, 61, 102-107.	0.3	3
68	Effects of growth temperature on the structural and the optical properties of ZnO thin films on porous silicon grown by using plasma-assisted molecular beam epitaxy. Journal of the Korean Physical Society, 2012, 60, 1570-1575.	0.3	3
69	Effects of zinc capping layers and annealing on the properties of porous silicon. Journal of the Korean Physical Society, 2012, 60, 1582-1586.	0.3	3
70	Photoluminescent properties of Cd \times Zn1â^' \times O thin films prepared by sol-gel spin-coating method. Electronic Materials Letters, 2013, 9, 497-500.	1.0	3
71	Growth and optical properties of sol-gel ZnO thin films grown on R-plane sapphire substrates. Journal of the Korean Physical Society, 2013, 62, 1154-1159.	0.3	3
72	Influence of dislocation density on carrier injection in InGaN/GaN light-emitting diodes operated with alternating current. Applied Physics Letters, 2013, 102, 011115.	1.5	3

#	Article	IF	CITATIONS
73	Temperature dependence of the photovoltage from Franz-Keldysh oscillations in a GaAs p+-i-n+ structure. Journal of the Korean Physical Society, 2015, 67, 916-920.	0.3	3
74	Improvement of the Crystallinity of <scp>MgZnO</scp> with a Zn Buffer Layer by Sol–Gel Spinâ€coating Method. Bulletin of the Korean Chemical Society, 2015, 36, 1575-1579.	1.0	3
75	Preparation of Highâ€Quality <scp>ZnO</scp> Nanorods by Electrodeposition Using a Rotating Cathode and Improvements in their <scp>UV</scp> Sensing Properties. Bulletin of the Korean Chemical Society, 2016, 37, 1278-1284.	1.0	3
76	Improved UV photoresponse properties of high-quality ZnO thin films through the use of a ZnO buffer layer on flexible polyimide substrates. Journal of the Korean Physical Society, 2016, 68, 705-709.	0.3	3
77	Electrical and optical characterizations of InAs/GaAs quantum dot solar cells. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	3
78	Effect of an Electrochemically Oxidized ZnO Seed Layer on ZnO Nanorods Grown by using Electrodeposition. Journal of the Korean Physical Society, 2018, 72, 1237-1242.	0.3	3
79	Effects of post-annealing temperature on the properties of ZnO nanorods grown on homogenous seed-layers by using the hydrothermal method. Journal of the Korean Physical Society, 2012, 60, 1605-1610.	0.3	2
80	Formation characteristics of a self-catalyzed GaAs nanowire without a Ga droplet on Si(111). Journal of the Korean Physical Society, 2012, 61, 2017-2021.	0.3	2
81	Structural dependency of the optical properties of coupled GaAs quantum qots and rings. Journal of the Korean Physical Society, 2012, 61, 455-459.	0.3	2
82	Modification in the structural and optical characteristics of InAs quantum dots by manipulating the strain distribution. Journal of the Korean Physical Society, 2012, 60, 460-465.	0.3	2
83	Effects of annealing temperature on optical properties of ZnO nanorods with Mg0.2Zn0.8O capping layers. Electronic Materials Letters, 2013, 9, 545-548.	1.0	2
84	Influences of dot-in-a-well structure and GaAs insertion layer on InP-based InAs quantum dots. Journal of the Korean Physical Society, 2013, 62, 1274-1279.	0.3	2
85	Influence of Cr-doping on the structural and the optical properties of ZnO thin films prepared by sol-gel spin coating. Journal of the Korean Physical Society, 2014, 64, 41-45.	0.3	2
86	A novel regrowth method to simply prepare Li-doped ZnO nanorods and improve their photoluminescence properties. RSC Advances, 2014, 4, 46635-46638.	1.7	2
87	Structural and Optical Properties of Nitrogenâ€doped Zinc Oxide Thin Films Grown on Muscovite Mica Substrates Using Sol–Gel Process. Bulletin of the Korean Chemical Society, 2015, 36, 2267-2271.	1.0	2
88	Effects of doping concentration on the structural and the optical properties of Sol-gel-derived In-doped ZnO thin films grown on muscovite mica substrates. Journal of the Korean Physical Society, 2015, 66, 1516-1520.	0.3	2
89	Oxidation-temperature dependence of the optical properties of ZnO thin films grown on corning glass by oxidation of metallic Zn. Journal of the Korean Physical Society, 2015, 67, 1278-1283.	0.3	2
90	Effects of Al-Doping Concentration on the Photoresponse Properties of Al-Doped ZnO Thin Films with ZnO Buffer Layer. Journal of Nanoscience and Nanotechnology, 2017, 17, 7879-7882.	0.9	2

#	Article	IF	CITATIONS
91	Fabrication of Fast-response Ultraviolet Light Sensors with LZO Thin Films using Sol-gel Spin-coating Method. Journal of the Korean Physical Society, 2018, 72, 417-423.	0.3	2
92	Thermal Dissipation Annealing for Crystallization of Inâ€Doped ZnO Films Deposited on Polyethylene Naphthalate Substrate without Substrate Deformation. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000698.	0.8	2
93	Catalyst-free ZnO on porous silicon grown by using vapor phase transport. Journal of the Korean Physical Society, 2012, 60, 1129-1134.	0.3	1
94	Photoluminescence studies of ZnO thin films prepared using a laser-assisted sol-gel method. Journal of the Korean Physical Society, 2012, 61, 1826-1830.	0.3	1
95	Optical properties and crystallinity of ZnO thin films grown on porous silicon by using plasma-assisted molecular beam epitaxy. Journal of the Korean Physical Society, 2012, 60, 1949-1952.	0.3	1
96	Structural properties and optical constants of Co-doped ZnO thin films deposited using sol-gel spin-coating. Journal of the Korean Physical Society, 2013, 63, 1962-1967.	0.3	1
97	Photoluminescence studies of ZnO films fabricated by using a combination of a hydrothermal method and plasma-assisted molecular beam epitaxy regrowth. Journal of the Korean Physical Society, 2014, 64, 455-460.	0.3	1
98	Influence of gas flow on structural and optical properties of ZnO submicron particles grown on Au nano thin films by vapor phase transport. Electronic Materials Letters, 2014, 10, 915-920.	1.0	1
99	Periodic variation in the electroluminescence intensity on a single pattern from InGaN/GaN light-emitting diodes fabricated on lens-shaped patterns. Journal of the Korean Physical Society, 2015, 66, 266-269.	0.3	1
100	Effect of Electric Current on Oxidation of Zn Films to ZnO Films Using Electrochemical System. Journal of Nanoscience and Nanotechnology, 2018, 18, 6095-6100.	0.9	1
101	Improved photoresponse properties of hydrothermally grown ZnO nanorods by controlling the Ga doping location. Journal of the Korean Physical Society, 2021, 78, 144-156.	0.3	1
102	The Role of AlN Interlayer in AlxGa1-xN/GaN Heterostructures with high x from 0.35 to 0.50 Grown on Sapphire (0001). Materials Research Society Symposia Proceedings, 2002, 722, 741.	0.1	0
103	Temperature-dependent photoluminescence of ZnO thin films deposited by using the sol-gel dip-coating method. Journal of the Korean Physical Society, 2012, 61, 1171-1176.	0.3	0
104	Improved blue electroluminescence in InGaN/GaN multiple-quantum well light-emitting diodes with an electron blocking layer. Journal of the Korean Physical Society, 2013, 62, 1160-1163.	0.3	0
105	Analysis of the abnormal voltage-current behaviors on localized carriers of InGaN/GaN multiple quantum well from electron blocking layer. Journal of the Korean Physical Society, 2013, 63, 1784-1788.	0.3	0
106	Photoluminescence and Structural Properties of Tinâ€doped <scp>ZnO</scp> Thin Films Deposited by Sol–Gel Dip Coating. Bulletin of the Korean Chemical Society, 2015, 36, 1613-1617.	1.0	0
107	A regrowth method for the fabrication of high-quality ZnO films and their application in fast-response UV sensors. Journal of the Korean Physical Society, 2017, 71, 47-53.	0.3	0
108	Effect of an Oxidized Metallic Zn Buffer Layer on the Morphological, Optical, Electrical, and Photoresponse Properties of Spin-coated ZnO Films. Journal of the Korean Physical Society, 2018, 72, 1243-1248.	0.3	O

#	Article	IF	CITATIONS
109	Effect of the Seed Layer Type and Precursor Concentration on the Structural, Morphological, and Photoresponse Properties of Hydrothermally Grown ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2020, 20, 298-303.	0.9	0
110	Regrowth of ZnO nanorods via VC-FTFA method and the effect of oxidation of ZnCl2 and InCl3 vapors on the photoresponse rate, photosensitivity, and stability. Materials Chemistry and Physics, 2022, 284, 126089.	2.0	O