Jin Y Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284082/publications.pdf

Version: 2024-02-01

		840776	996975
15	381	11	15
papers	citations	h-index	g-index
15	15	15	519
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Formation of Redox-Active Duroquinone from Vaping of Vitamin E Acetate Contributes to Oxidative Lung Injury. Chemical Research in Toxicology, 2022, 35, 254-264.	3.3	12
2	Effects of hydrogenated vegetable oil (HVO) and HVO/biodiesel blends on the physicochemical and toxicological properties of emissions from an off-road heavy-duty diesel engine. Fuel, 2022, 323, 124283.	6.4	21
3	Integrative Analysis of IncRNA–mRNA Coexpression in Human Lung Epithelial Cells Exposed to Dimethyl Selenide-Derived Secondary Organic Aerosols. Chemical Research in Toxicology, 2021, 34, 892-900.	3.3	5
4	Estimation of the dose of electronic cigarette chemicals deposited in human airways through passive vaping. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 1008-1016.	3.9	15
5	Carbonyl Composition and Electrophilicity in Vaping Emissions of Flavored and Unflavored E-Liquids. Toxics, 2021, 9, 345.	3.7	9
6	Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. Science of the Total Environment, 2020, 706, 135732.	8.0	20
7	Time-Dependent Density Functional Theory Investigation of the UV–Vis Spectra of Organonitrogen Chromophores in Brown Carbon. ACS Earth and Space Chemistry, 2020, 4, 311-320.	2.7	15
8	Microbial Cleavage of C–F Bonds in Two C ₆ Per- and Polyfluorinated Compounds via Reductive Defluorination. Environmental Science & Envir	10.0	73
9	Chemical and Toxicological Characterization of Vaping Emission Products from Commonly Used Vape Juice Diluents. Chemical Research in Toxicology, 2020, 33, 2157-2163.	3.3	28
10	Role of functional groups in reaction kinetics of dithiothreitol with secondary organic aerosols. Environmental Pollution, 2020, 263, 114402.	7.5	11
11	Use of Dithiothreitol Assay to Evaluate the Oxidative Potential of Atmospheric Aerosols. Atmosphere, 2019, 10, 571.	2.3	55
12	Brown Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic Volatile Organic Compounds. Environmental Science and Technology Letters, 2019, 6, 184-190.	8.7	60
13	Characterization of electrophilicity and oxidative potential of atmospheric carbonyls. Environmental Sciences: Processes and Impacts, 2019, 21, 856-866.	3.5	17
14	Exposure to Dimethyl Selenide (DMSe)-Derived Secondary Organic Aerosol Alters Transcriptomic Profiles in Human Airway Epithelial Cells. Environmental Science & Enpi; Technology, 2019, 53, 14660-14669.	10.0	13
15	Traffic-Related Particulate Matter and Cardiometabolic Syndrome: A Review. Atmosphere, 2018, 9, 336.	2.3	27