
Lindsey I James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5283932/publications.pdf Version: 2024-02-01

LINDSEV LAMES

#	Article	IF	CITATIONS
1	Reprogramming CBX8-PRC1 function with a positive allosteric modulator. Cell Chemical Biology, 2022, 29, 555-571.e11.	5.2	12
2	A chemical probe targeting the PWWP domain alters NSD2 nucleolar localization. Nature Chemical Biology, 2022, 18, 56-63.	8.0	41
3	Systematic Variation of Both the Aromatic Cage and Dialkyllysine via GCE-SAR Reveal Mechanistic Insights in CBX5 Reader Protein Binding. Journal of Medicinal Chemistry, 2022, 65, 2646-2655.	6.4	13
4	<i>Cdyl</i> Deficiency Brakes Neuronal Excitability and Nociception through Promoting <i>Kcnb1</i> Transcription in Peripheral Sensory Neurons. Advanced Science, 2022, 9, e2104317.	11.2	4
5	Bioorthogonal Chemical Epigenetic Modifiers Enable Dose-Dependent CRISPR Targeted Gene Activation in Mammalian Cells. ACS Synthetic Biology, 2022, 11, 1397-1407.	3.8	3
6	Discovery of Potent Peptidomimetic Antagonists for Heterochromatin Protein 1 Family Proteins. ACS Omega, 2022, 7, 716-732.	3.5	3
7	Combined noncanonical NF-Î [®] B agonism and targeted BET bromodomain inhibition reverse HIV latency ex vivo. Journal of Clinical Investigation, 2022, 132, .	8.2	17
8	Getting a handle on chemical probes of chomatin readers. Future Medicinal Chemistry, 2021, 13, 749-763.	2.3	4
9	Discovery of Small-Molecule Antagonists of the PWWP Domain of NSD2. Journal of Medicinal Chemistry, 2021, 64, 1584-1592.	6.4	29
10	Epigenomic characterization of latent HIV infection identifies latency regulating transcription factors. PLoS Pathogens, 2021, 17, e1009346.	4.7	32
11	Discovery of an H3K36me3-Derived Peptidomimetic Ligand with Enhanced Affinity for Plant Homeodomain Finger Protein 1 (PHF1). Journal of Medicinal Chemistry, 2021, 64, 8510-8522.	6.4	12
12	Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Current Opinion in Chemical Biology, 2021, 63, 132-144.	6.1	14
13	A Peptidomimetic Ligand Targeting the Chromodomain of MPP8 Reveals HRP2's Association with the HUSH Complex. ACS Chemical Biology, 2021, 16, 1721-1736.	3.4	12
14	Assessing the Cell Permeability of Bivalent Chemical Degraders Using the Chloroalkane Penetration Assay. ACS Chemical Biology, 2020, 15, 290-295.	3.4	60
15	TBK1 Is a Synthetic Lethal Target in Cancer with <i>VHL</i> Loss. Cancer Discovery, 2020, 10, 460-475.	9.4	63
16	Degradation of Polycomb Repressive Complex 2 with an EED-Targeted Bivalent Chemical Degrader. Cell Chemical Biology, 2020, 27, 47-56.e15.	5.2	127
17	Evaluation of EED Inhibitors as a Class of PRC2-Targeted Small Molecules for HIV Latency Reversal. ACS Infectious Diseases, 2020, 6, 1719-1733.	3.8	17
18	Structural Basis for the Binding Selectivity of Human CDY Chromodomains. Cell Chemical Biology, 2020, 27, 827-838.e7.	5.2	10

LINDSEY I JAMES

#	Article	IF	CITATIONS
19	Targeting Regorafenib-Induced Toxicity through Inhibition of Gut Microbial β-Glucuronidases. ACS Chemical Biology, 2019, 14, 2737-2744.	3.4	41
20	Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7. Cell Chemical Biology, 2019, 26, 1365-1379.e22.	5.2	38
21	Canonical PRC1 controls sequence-independent propagation of Polycomb-mediated gene silencing. Nature Communications, 2019, 10, 1931.	12.8	54
22	Discovery of selective activators of PRC2 mutant EED-I363M. Scientific Reports, 2019, 9, 6524.	3.3	12
23	A General TR-FRET Assay Platform for High-Throughput Screening and Characterizing Inhibitors of Methyl-Lysine Reader Proteins. SLAS Discovery, 2019, 24, 693-700.	2.7	25
24	Structure–activity relationships and cellular mechanism of action of small molecules that enhance the delivery of oligonucleotides. Nucleic Acids Research, 2018, 46, 1601-1613.	14.5	29
25	Quantitative Characterization of Bivalent Probes for a Dual Bromodomain Protein, Transcription Initiation Factor TFIID Subunit 1. Biochemistry, 2018, 57, 2140-2149.	2.5	16
26	Chromatin remodeling controls Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLoS Pathogens, 2018, 14, e1007267.	4.7	32
27	Gut Microbial Î ² -Glucuronidase Inhibition via Catalytic Cycle Interception. ACS Central Science, 2018, 4, 868-879.	11.3	52
28	Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2. ACS Combinatorial Science, 2017, 19, 161-172.	3.8	43
29	Target class drug discovery. Nature Chemical Biology, 2017, 13, 1053-1056.	8.0	31
30	Peptide Technologies in the Development of Chemical Tools for Chromatinâ€Associated Machinery. Drug Development Research, 2017, 78, 300-312.	2.9	4
31	A Novel Family of Small Molecules that Enhance the Intracellular Delivery and Pharmacological Effectiveness of Antisense and Splice Switching Oligonucleotides. ACS Chemical Biology, 2017, 12, 1999-2007.	3.4	19
32	Structure–Activity Relationships and Kinetic Studies of Peptidic Antagonists of CBX Chromodomains. Journal of Medicinal Chemistry, 2016, 59, 8913-8923.	6.4	28
33	Design, synthesis, and protein methyltransferase activity of a unique set of constrained amine containing compounds. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4436-4440.	2.2	8
34	Chromodomain Ligand Optimization via Target-Class Directed Combinatorial Repurposing. ACS Chemical Biology, 2016, 11, 2475-2483.	3.4	46
35	Chemical probes for methyl lysine reader domains. Current Opinion in Chemical Biology, 2016, 33, 135-141.	6.1	24
36	A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nature Chemical Biology, 2016, 12, 180-187.	8.0	133

LINDSEY I JAMES

#	Article	IF	CITATIONS
37	The L3MBTL3 Methyl-Lysine Reader Domain Functions As a Dimer. ACS Chemical Biology, 2016, 11, 722-728.	3.4	8
38	Identification of a Fragment-like Small Molecule Ligand for the Methyl-lysine Binding Protein, 53BP1. ACS Chemical Biology, 2015, 10, 1072-1081.	3.4	56
39	Small-Molecule Ligands of Methyl-Lysine Binding Proteins: Optimization of Selectivity for L3MBTL3. Journal of Medicinal Chemistry, 2013, 56, 7358-7371.	6.4	66
40	Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nature Chemical Biology, 2013, 9, 184-191.	8.0	160
41	A Synthetic Receptor for Asymmetric Dimethyl Arginine. Journal of the American Chemical Society, 2013, 135, 6450-6455.	13.7	86
42	An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chemical Biology, 2013, 8, 1324-1334.	3.4	399