Xun Cao

List of Publications by Citations

Source: https://exaly.com/author-pdf/5283781/xun-cao-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,788 40 74 24 h-index g-index citations papers 80 2,512 9.7 5.17 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
74	Ultrafine Metal Nanoparticles/N-Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binder-Free Water Splitting Catalysts. <i>Advanced Energy Materials</i> , 2017 , 7, 1700220	21.8	126
73	Nanoporous thermochromic VOI(M) thin films: controlled porosity, largely enhanced luminous transmittance and solar modulating ability. <i>Langmuir</i> , 2014 , 30, 1710-5	4	101
72	Recent advances in VO2-based thermochromic composites for smart windows. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1903-1919	7.1	92
71	Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance. <i>Langmuir</i> , 2016 , 32, 759-64	4	83
70	Facile and Low-Temperature Fabrication of Thermochromic CrO/VO Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function. <i>ACS Applied Materials & Discounty Communication</i> , 9, 26029-26037	9.5	82
69	Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. <i>Nature Communications</i> , 2021 , 12, 973	17.4	75
68	Van der Waals negative capacitance transistors. <i>Nature Communications</i> , 2019 , 10, 3037	17.4	71
67	High Performance and Enhanced Durability of Thermochromic Films Using VO@ZnO Core-Shell Nanoparticles. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 27784-27791	9.5	71
66	Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application. <i>Advances in Manufacturing</i> , 2018 , 6, 1-19	2.7	69
65	Spatially Resolved Dynamically Reconfigurable Multilevel Control of Thermal Emission. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900162	8.3	59
64	Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. <i>Nature Communications</i> , 2020 , 11, 3729	17.4	57
63	Confining Tiny MoO Clusters into Reduced Graphene Oxide for Highly Efficient Low Frequency Microwave Absorption. <i>Small</i> , 2020 , 16, e2001686	11	43
62	Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11938-11947	13	42
61	Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2019 , 244, 56-62	21.8	41
60	Nanostructured Metal-Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage. <i>Small</i> , 2019 , 15, e1903188	11	40
59	Nanostructured CuO/C Hollow Shell@3D Copper Dendrites as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. <i>ACS Applied Materials & Description of Materials & Descript</i>	9.5	40
58	Effects of V2O3 buffer layers on sputtered VO2 smart windows: Improved thermochromic properties, tunable width of hysteresis loops and enhanced durability. <i>Applied Surface Science</i> , 2018 , 441, 764-772	6.7	38

(2021-2019)

57	Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage. <i>Carbon</i> , 2019 , 142, 269-277	10.4	38
56	Application-oriented VO2 thermochromic coatings with composite structures: Optimized optical performance and robust fatigue properties. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 189, 138-148	6.4	36
55	Challenges and Opportunities toward Real Application of VO2-Based Smart Glazing. <i>Matter</i> , 2020 , 2, 862-881	12.7	34
54	Mitigating Deterioration of Vanadium Dioxide Thermochromic Films by Interfacial Encapsulation. <i>Matter</i> , 2019 , 1, 734-744	12.7	34
53	Self-Template Synthesis of Nanoporous VO-Based Films: Localized Surface Plasmon Resonance and Enhanced Optical Performance for Solar Glazing Application. <i>ACS Applied Materials & Description (Materials & Description (Mate</i>	9.5	30
52	Oxygen vacancy mediated bismuth stannate ultra-small nanoparticle towards photocatalytic CO2-to-CO conversion. <i>Applied Catalysis B: Environmental</i> , 2020 , 276, 119156	21.8	30
51	The Self-Passivation Mechanism in Degradation of BiVO Photoanode. <i>IScience</i> , 2019 , 19, 976-985	6.1	27
50	The synergistic catalysis on Co nanoparticles and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. <i>Chinese Chemical Letters</i> , 2021 , 32, 685-690	8.1	23
49	Superior Li-ion storage of VS nanowires anchored on reduced graphene. <i>Nanoscale</i> , 2019 , 11, 9556-956	2 _{7.7}	21
48	Solution-based fabrication of VO2 (M) nanoparticles via lyophilisation. <i>RSC Advances</i> , 2015 , 5, 25669-25	6 7.5	21
47	A plasmonic non-stoichiometric WO homojunction with stabilizing surface plasmonic resonance for selective photochromic modulation. <i>Chemical Communications</i> , 2018 , 54, 5241-5244	5.8	21
46	Development of polyoxometalate-anchored 3D hybrid hydrogel for high-performance flexible pseudo-solid-state supercapacitor. <i>Electrochimica Acta</i> , 2020 , 329, 135181	6.7	18
45	Highly Enhanced Thermochromic Performance of VO Film Using "Movable" Antireflective Coatings. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	17
44	Highly anisotropic thermoelectric properties of black phosphorus crystals. 2D Materials, 2019, 6, 04500	9 5.9	17
43	Broadband thermochromic VO 2 -based composite film with ultra-high solar modulation ability. <i>Materials Letters</i> , 2018 , 222, 62-65	3.3	16
42	Ordered distributed nickel sulfide nanoparticles across graphite nanosheets for efficient oxygen evolution reaction electrocatalyst. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 1544-1554	6.7	16
41	The Electrochemical Response of Single Crystalline Copper Nanowires to Atmospheric Air and Aqueous Solution. <i>Small</i> , 2017 , 13, 1603411	11	15
40	High thermoelectric performance enabled by convergence of nested conduction bands in PbBiSe with low thermal conductivity. <i>Nature Communications</i> , 2021 , 12, 4793	17.4	15

39	How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24164-24172	13	13
38	Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. Journal of Alloys and Compounds, 2019 , 773, 762-769	5.7	13
37	Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant. <i>Chemosphere</i> , 2019 , 214, 341-348	8.4	12
36	High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu2SnSe3. <i>Advanced Energy Materials</i> , 2021 , 11, 2100661	21.8	11
35	Porous cobalt@N-doped carbon derived from chitosan for oxidative esterification of 5-Hydroxymethylfurfural: The roles of zinc in the synthetic and catalytic process. <i>Molecular Catalysis</i> , 2020 , 482, 110695	3.3	11
34	Innovative development on a p-type delafossite CuCrO2 nanoparticles based triethylamine sensor. <i>Sensors and Actuators B: Chemical</i> , 2020 , 324, 128743	8.5	11
33	Confinement of single polyoxometalate clusters in molecular-scale cages for improved flexible solid-state supercapacitors. <i>Nanoscale</i> , 2020 , 12, 11887-11898	7.7	11
32	Electrons-Donating Derived Dual-Resistant Crust of VO Nano-Particles via Ascorbic Acid Treatment for Highly Stable Smart Windows Applications. <i>ACS Applied Materials & District Stable Smart Windows Applications</i> . <i>ACS Applied Materials & District Stable Smart Windows Applications</i> .	49: 5 37	10
31	Phase engineering of Cr5Te8 with colossal anomalous Hall effect. <i>Nature Electronics</i> , 2022 , 5, 224-232	28.4	10
30	Transmittance change with thickness for polycrystalline VO2 films deposited at room temperature. Journal of Alloys and Compounds, 2019 , 791, 648-654	5.7	9
29	Microwave Absorption: Confining Tiny MoO2 Clusters into Reduced Graphene Oxide for Highly Efficient Low Frequency Microwave Absorption (Small 30/2020). <i>Small</i> , 2020 , 16, 2070168	11	9
28	Molecular-scale cage-confinement pyrolysis route to size-controlled molybdenum carbide nanoparticles for electrochemical sensor. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112373	11.8	8
27	Growth of Lattice Coherent Co9S8/Co3O4 Nano-Heterostructure for Maximizing the Catalysis of Co-Based Composites. <i>ChemCatChem</i> , 2020 , 12, 2431-2435	5.2	8
26	Dual-Nitrogen-Doped Carbon Decorated on Na3V2(PO4)3 to Stabilize the Intercalation of Three Sodium Ions. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6870-6879	6.1	8
25	Chemical Vapor Deposition of Superconducting FeTeSe Nanosheets. <i>Nano Letters</i> , 2021 , 21, 5338-5344	11.5	8
24	Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction. Journal of Physical Chemistry Letters, 2020 , 11, 3005-3013	6.4	7
23	Janus-like particles prepared through partial UV irradiation at the water/oil interface and their encapsulation capabilities. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 589, 124460	5.1	6
22	Tunable low-dimensional self-assembly of H-shaped bichromophoric perylenediimide Gemini in solution. <i>Nanoscale</i> , 2020 , 12, 3058-3067	7.7	6

(2021-2021)

21	Mechanically Durable Memristor Arrays Based on a Discrete Structure Design. <i>Advanced Materials</i> , 2021 , e2106212	24	5	
20	Metal-organic framework derived CoSe@Nitrogen-doped porous carbon as a high-performance anode material for lithium ion batteries. <i>Nanotechnology</i> , 2020 , 31, 215602	3.4	5	
19	Strained Ultralong Silver Nanowires for Enhanced Electrocatalytic Oxygen Reduction Reaction in Alkaline Medium. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2029-2035	6.4	5	
18	Catalysis of Au nano-pyramids formed across the surfaces of ordered Au nano-ring arrays. <i>Journal of Catalysis</i> , 2019 , 377, 389-399	7-3	4	
17	A three-dimensional porous MoS2BVP aerogel as a highly efficient and recyclable sorbent for oils and organic solvents. <i>Materials Advances</i> , 2020 , 1, 760-766	3.3	4	
16	Bifunctional copper cathode induced oxidation of glycerol with liquid plasma discharge. <i>Separation and Purification Technology</i> , 2019 , 220, 328-333	8.3	3	
15	Epitaxial Bi9Ti3Fe5O27 thin films: a new type of layer-structure room-temperature multiferroic. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7720-7725	7.1	3	
14	Unraveling the effects of anions in NixAy@CC (A=O, S, P) on Li-sulfur batteries. <i>Materials Today Nano</i> , 2021 , 13, 100106	9.7	3	
13	Atomically Dispersed Intrinsic Hollow Sites of M - M 1 - M (M 1	15.6	2	
12	Conductivity Modulation of 3D-Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh-Current Oxygen Evolution. <i>Advanced Energy Materials</i> , 2021 , 11, 2100968	21.8	2	
11	Decomposition behavior in the early-stage oxidation of Sm2Co17-type magnets. <i>Scripta Materialia</i> , 2021 , 200, 113911	5.6	2	
10	Twinning enhanced electrical conductivity and surface activity of nanostructured CuCrO2 gas sensor. <i>Sensors and Actuators B: Chemical</i> , 2021 , 338, 129845	8.5	2	
9	Facile synthesis of hydrated magnesium vanadium bronze EMg0.25V2O5EH2O as a novel cathode material for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 931-938	5.7	2	
8	Multifunctional Flexible Vanadium Dioxide Films. Accounts of Materials Research, 2021, 2, 714-725	7.5	2	
7	One-step fabrication of Cu2O-Cu catalytic electrodes with regular porous array by ultra-fast laser scanning. <i>Journal of Alloys and Compounds</i> , 2022 , 900, 163455	5.7	1	
6	Bioactive CaTiO3 film prepared on the biomedical porous Till 5Mo alloy by one-step hydrothermal treatment. <i>Journal of Materials Research and Technology</i> , 2021 , 14, 202-209	5.5	1	
5	Flexible Au micro-array electrode with atomic-scale Au thin film for enhanced ethanol oxidation reaction. <i>Nano Research</i> , 2021 , 14, 311-319	10	О	
4	Atomic-scale oxidation of a Sm2Co17-type magnet. <i>Acta Materialia</i> , 2021 , 117343	8.4	O	

Xun Cao

7.5

2022, 3, 403-403