
Jayson R Gifford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5283742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H346-H352.	3.2	97
2	Further Peripheral Vascular Dysfunction inÂHeart Failure Patients With a Continuous-Flow Left Ventricular Assist Device. JACC: Heart Failure, 2015, 3, 703-711.	4.1	83
3	Symmorphosis and skeletal muscle : <i>in vivo</i> and <i>in vitro</i> measures reveal differing constraints in the exerciseâ€trained and untrained human. Journal of Physiology, 2016, 594, 1741-1751.	2.9	79
4	CORP: Ultrasound assessment of vascular function with the passive leg movement technique. Journal of Applied Physiology, 2017, 123, 1708-1720.	2.5	66
5	Strong Relationship Between Vascular Function in the Coronary and Brachial Arteries. Hypertension, 2019, 74, 208-215.	2.7	63
6	Exercise training improves vascular mitochondrial function. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H821-H829.	3.2	35
7	Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Medicine and Science in Sports and Exercise, 2018, 50, 2409-2417.	0.4	34
8	Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration. Journal of Applied Physiology, 2015, 119, 882-888.	2.5	33
9	Single passive leg movement assessment of vascular function: contribution of nitric oxide. Journal of Applied Physiology, 2017, 123, 1468-1476.	2.5	33
10	Impact of age on the vasodilatory function of human skeletal muscle feed arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H217-H225.	3.2	32
11	α ₁ â€Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH. Experimental Physiology, 2013, 98, 256-267.	2.0	31
12	Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved. Journal of Applied Physiology, 2019, 127, 1257-1266.	2.5	31
13	Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity. Experimental Physiology, 2018, 103, 838-850.	2.0	29
14	Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. Journal of Applied Physiology, 2018, 124, 1045-1053.	2.5	24
15	Accuracy and precision of quantitative ³¹ P-MRS measurements of human skeletal muscle mitochondrial function. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E358-E366.	3.5	23
16	The role of muscle mass in exercise-induced hyperemia. Journal of Applied Physiology, 2014, 116, 1204-1209.	2.5	22
17	α ₁ - and α ₂ -Adrenergic responsiveness in human skeletal muscle feed arteries: the role of TRPV ion channels in heat-induced sympatholysis. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1288-H1297.	3.2	21
18	TRPV ₁ channels in human skeletal muscle feed arteries: implications for vascular function. Experimental Physiology, 2017, 102, 1245-1258.	2.0	21

JAYSON R GIFFORD

#	Article	IF	CITATIONS
19	Changes in dermal interstitial ATP levels during local heating of human skin. Journal of Physiology, 2012, 590, 6403-6411.	2.9	16
20	Mitochondrial function in heart failure: The impact of ischemic and non-ischemic etiology. International Journal of Cardiology, 2016, 220, 711-717.	1.7	15
21	Vascular function is related to blood flow during high-intensity, but not low-intensity, knee extension exercise. Journal of Applied Physiology, 2020, 128, 698-708.	2.5	13
22	Exercise-induced brachial artery blood flow and vascular function is impaired in systemic sclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1375-H1381.	3.2	11
23	Delineating the age-related attenuation of vascular function: Evidence supporting the efficacy of the single passive leg movement as a screening tool. Journal of Applied Physiology, 2019, 126, 1525-1532.	2.5	8
24	Indices of leg resistance artery function are independently related to cycling V̇O ₂ max. Physiological Reports, 2020, 8, e14551.	1.7	8
25	On the implication of dietary nitrate supplementation for the hemodynamic and fatigue response to cycling exercise. Journal of Applied Physiology, 2021, 131, 1691-1700.	2.5	8
26	Passive muscle heating attenuates the decline in vascular function caused by limb disuse. Journal of Physiology, 2021, 599, 4581-4596.	2.9	6
27	Critical Speed throughout Aging: Insight into the World Masters Championships. Medicine and Science in Sports and Exercise, 2021, 53, 524-533.	0.4	6
28	The effect of the speed and range of motion of movement on the hyperemic response to passive leg movement. Physiological Reports, 2019, 7, e14064.	1.7	5
29	Passive leg movement in chronic obstructive pulmonary disease: evidence of locomotor muscle vascular dysfunction. Journal of Applied Physiology, 2020, 128, 1402-1411.	2.5	5
30	Symmorphosis in patients with chronic heart failure?. Journal of Applied Physiology, 2016, 121, 1039-1039.	2.5	4
31	Reliability of the Passive Leg Movement Assessment of Vascular Function. Medicine and Science in Sports and Exercise, 2017, 49, 814.	0.4	4
32	The role of endothelin A receptors in peripheral vascular control at rest and during exercise in patients with hypertension. Journal of Physiology, 2020, 598, 71-84.	2.9	3
33	Reliability of the passive leg movement assessment of vascular function in men. Experimental Physiology, 2022, 107, 541-552.	2.0	2
34	Stretchingâ€based vascular rehabilitation? it's not a stretch. Journal of Physiology, 2020, 598, 3537-3538.	2.9	1
35	Skeletal Muscle Mitochondrial Function following a 100-km Ultramarathon. Medicine and Science in Sports and Exercise, 2021, Publish Ahead of Print, 2363-2373.	0.4	1
36	Effect Of High-intensity Vs. Moderate-intensity Endurance Training On Critical Power In Untrained, Young Adults. Medicine and Science in Sports and Exercise, 2021, 53, 27-27.	0.4	0

JAYSON R GIFFORD

#	Article	IF	CITATIONS
37	TRPV1 Channels in Human Skeletal Muscle Feed Arteries. Medicine and Science in Sports and Exercise, 2014, 46, 328.	0.4	Ο
38	Peripheral Vascular Dysfunction Following Left Ventricular Assist Device Implantation. Medicine and Science in Sports and Exercise, 2016, 48, 189.	0.4	0
39	The Age-related Decline In Vo2max. Medicine and Science in Sports and Exercise, 2017, 49, 904-905.	0.4	0
40	Role of Alphaâ€1 Adrenergic Vasoconstriction in Regulating Skeletal Muscle Blood Flow during Single Leg Knee Extension Exercise with Advancing Age. FASEB Journal, 2018, 32, 594.5.	0.5	0
41	Sex Differences in the Sympathetic Restraint of Skeletal Muscle Blood Flow in the Human Leg Vasculature. FASEB Journal, 2018, 32, 594.4.	0.5	0
42	The Role of Endothelinâ€1 in Exercising Blood Flow and Blood Pressure Regulation in Patients with Hypertension. FASEB Journal, 2019, 33, 696.11.	0.5	0
43	Response. Medicine and Science in Sports and Exercise, 2020, 52, 1437-1437.	0.4	0
44	Impact of Interrepetition Rest on Muscle Blood Flow and Exercise Tolerance during Resistance Exercise. Medicina (Lithuania), 2022, 58, 822.	2.0	0