Takashi Tsukagoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5283735/publications.pdf

Version: 2024-02-01

99 papers

3,376 citations

32 h-index 54 g-index

101 all docs

101 docs citations

times ranked

101

1955 citing authors

#	Article	IF	CITATIONS
1	MILLIMETER-WAVE POLARIZATION OF PROTOPLANETARY DISKS DUE TO DUST SCATTERING. Astrophysical Journal, 2015, 809, 78.	4.5	197
2	MASS ESTIMATES OF A GIANT PLANET IN A PROTOPLANETARY DISK FROM THE GAP STRUCTURES. Astrophysical Journal Letters, 2015, 806, L15.	8.3	153
3	Local Enhancement of the Surface Density in the Protoplanetary Ring Surrounding HD 142527. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	129
4	Molecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlights. Astrophysical Journal, Supplement Series, 2021, 257, 1.	7.7	117
5	The Evidence of Radio Polarization Induced by the Radiative Grain Alignment and Self-scattering of Dust Grains in a Protoplanetary Disk. Astrophysical Journal Letters, 2017, 844, L5.	8.3	109
6	SUBARU IMAGING OF ASYMMETRIC FEATURES IN A TRANSITIONAL DISK IN UPPER SCORPIUS. Astrophysical Journal Letters, 2012, 760, L26.	8.3	108
7	ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA. Astrophysical Journal Letters, 2016, 819, L7.	8.3	105
8	Mass constraint for a planet in a protoplanetary disk from the gap width. Publication of the Astronomical Society of Japan, $2016, 68, .$	2.5	104
9	DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE. Astrophysical Journal Letters, 2015, 802, L17.	8.3	96
10	A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya. Astrophysical Journal Letters, 2016, 829, L35.	8.3	90
11	SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527. Astrophysical Journal Letters, 2016, 831, L12.	8.3	88
12	Molecules with ALMA at Planet-forming Scales (MAPS). V. CO Gas Distributions. Astrophysical Journal, Supplement Series, 2021, 257, 5.	7.7	87
13	GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE. Astrophysical Journal, 2016, 820, 54.	4.5	86
14	High abundance ratio of ^{13 < /sup > CO to C ^{18 < /sup > O toward photon-dominated regions in the Orion-A giant molecular cloud. Astronomy and Astrophysics, 2014, 564, A68.}}	5.1	66
15	THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 [,] . Astrophysical Journal, 2015, 799, 43.	4.5	65
16	EVIDENCE FOR CLOUD-CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION. Astrophysical Journal, 2012, 746, 25.	4.5	62
17	Molecules with ALMA at Planet-forming Scales (MAPS). IV. Emission Surfaces and Vertical Distribution of Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 4.	7.7	58
18	Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN Strategies for Synthesizing Images of Molecular Line Emission in Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 2.	7.7	58

#	Article	lF	CITATIONS
19	Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of Radial Chemical Substructures. Astrophysical Journal, Supplement Series, 2021, 257, 3.	7.7	57
20	Two Different Grain Size Distributions within the Protoplanetary Disk around HD 142527 Revealed by ALMA Polarization Observation. Astrophysical Journal, 2018, 864, 81.	4.5	56
21	Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission. Astrophysical Journal, Supplement Series, 2021, 257, 14.	7.7	56
22	New Panoramic View of 12CO and 1.1 mm Continuum Emission in the Orion A Giant Molecular Cloud. I. Survey Overview and Possible External Triggers of Star Formation. Publication of the Astronomical Society of Japan, 2011, 63, 105-123.	2.5	54
23	The Sizes and Depletions of the Dust and Gas Cavities in the Transitional Disk J160421.7-213028. Astrophysical Journal, 2017, 836, 201.	4.5	50
24	MOLECULAR OUTFLOWS FROM THE PROTOCLUSTER SERPENS SOUTH. Astrophysical Journal, 2011, 737, 56.	4.5	49
25	THE MOLECULAR OUTFLOWS IN THE i-OPHIUCHI MAIN CLOUD: IMPLICATIONS FOR TURBULENCE GENERATION. Astrophysical Journal, 2011, 726, 46.	4.5	44
26	Detection of Submillimeter-wave [C i] Emission in Gaseous Debris Disks of 49 Ceti and \hat{l}^2 Pictoris. Astrophysical Journal Letters, 2017, 839, L14.	8.3	44
27	Detection of an ultrabright submillimetre galaxy in the Subaru/XMM-Newtonâ€,Deep Fieldâ€,using AzTEC/ASTE. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3081-3096.	4.4	41
28	EXTENSIVE [C I] MAPPING TOWARD THE ORION-A GIANT MOLECULAR CLOUD. Astrophysical Journal Letters, 2013, 774, L20.	8.3	40
29	Molecules with ALMA at Planet-forming Scales (MAPS). VII. Substellar O/H and C/H and Superstellar C/O in Planet-feeding Gas. Astrophysical Journal, Supplement Series, 2021, 257, 7.	7.7	40
30	Discovery of An au-scale Excess in Millimeter Emission from the Protoplanetary Disk around TW Hya. Astrophysical Journal Letters, 2019, 878, L8.	8.3	37
31	A Spatially Resolved au-scale Inner Disk around DM Tau. Astrophysical Journal Letters, 2018, 868, L5.	8.3	36
32	First light demonstration of the integrated superconducting spectrometer. Nature Astronomy, 2019, 3, 989-996.	10.1	36
33	Significant gas-to-dust ratio asymmetry and variation in the disk of HDÂ142527 and the indication of gas depletion. Publication of the Astronomical Society of Japan, 2015, 67, .	2.5	35
34	CATALOG OF DENSE CORES IN THE ORION A GIANT MOLECULAR CLOUD. Astrophysical Journal, Supplement Series, 2015, 217, 7.	7.7	33
35	Molecules with ALMA at Planet-forming Scales (MAPS). XIX. Spiral Arms, a Tail, and Diffuse Structures Traced by CO around the GM Aur Disk. Astrophysical Journal, Supplement Series, 2021, 257, 19.	7.7	33
36	Detailed modeling of dust distribution in the disk of HDÂ142527. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	32

#	Article	IF	Citations
37	GW Ori: Interactions between a Triple-star System and Its Circumtriple Disk in Action. Astrophysical Journal Letters, 2020, 895, L18.	8.3	32
38	Scattering-induced Intensity Reduction: Large Mass Content with Small Grains in the Inner Region of the TW Hya disk. Astrophysical Journal, 2020, 893, 125.	4. 5	31
39	THE ROTATING OUTFLOW, ENVELOPE, AND DISK OF THE CLASS-0/I PROTOSTAR [BHB2007]#11 IN THE PIPE NEBULA. Astrophysical Journal, 2013, 771, 128.	4.5	30
40	Molecules with ALMA at Planet-forming Scales (MAPS). IX. Distribution and Properties of the Large Organic Molecules HC ₃ N, CH ₃ CN, and c-C ₃ H ₂ . Astrophysical Journal, Supplement Series, 2021, 257, 9.	7.7	30
41	Molecules with ALMA at Planet-forming Scales (MAPS). XII. Inferring the C/O and S/H Ratios in Protoplanetary Disks with Sulfur Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 12.	7.7	30
42	HIGH-RESOLUTION SUBMILLIMETER AND NEAR-INFRARED STUDIES OF THE TRANSITION DISK AROUND Sz 91. Astrophysical Journal, 2014, 783, 90.	4.5	29
43	Dust Continuum Emission and the Upper Limit Fluxes of Submillimeter Water Lines of the Protoplanetary Disk around HD 163296 Observed by ALMA. Astrophysical Journal, 2019, 875, 96.	4.5	28
44	SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkHÎ \pm 330 DISK. Astronomical Journal, 2016, 152, 222.	4.7	27
45	Nobeyama 45 m mapping observations toward the nearby molecular clouds Orion A, Aquila Rift, and M17: Project overview. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	26
46	ALMA Reveals a Misaligned Inner Gas Disk inside the Large Cavity of a Transitional Disk. Astrophysical Journal Letters, 2018, 868, L3.	8.3	25
47	Molecules with ALMA at Planet-forming Scales (MAPS). XI. CN and HCN as Tracers of Photochemistry in Disks. Astrophysical Journal, Supplement Series, 2021, 257, 11.	7.7	25
48	Molecules with ALMA at Planet-forming Scales (MAPS). XIII. HCO ⁺ and Disk Ionization Structure. Astrophysical Journal, Supplement Series, 2021, 257, 13.	7.7	24
49	Nobeyama 45â \in ‰m mapping observations toward Orion A. II. Classification of cloud structures and variation of the 13CO/C18O abundance ratio due to far-UV radiation. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	23
50	SPECTRAL-LINE SURVEY AT MILLIMETER AND SUBMILLIMETER WAVELENGTHS TOWARD AN OUTFLOW-SHOCKED REGION, OMC 2-FIR 4. Astrophysical Journal, Supplement Series, 2015, 221, 31.	7.7	22
51	Molecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing Protoplanetary Disk Structure within 20 au. Astrophysical Journal, Supplement Series, 2021, 257, 15.	7.7	21
52	CO Line Emission Surfaces and Vertical Structure in Midinclination Protoplanetary Disks. Astrophysical Journal, 2022, 932, 114.	4.5	21
53	Molecules with ALMA at Planet-forming Scales (MAPS). XVI. Characterizing the Impact of the Molecular Wind on the Evolution of the HD 163296 System. Astrophysical Journal, Supplement Series, 2021, 257, 16.	7.7	20
54	Multiwavelength study of the high-latitude cloud L1642: chain of star formation. Astronomy and Astrophysics, 2014, 563, A125.	5.1	18

#	Article	IF	CITATIONS
55	THE INTRINSIC ABUNDANCE RATIO AND X-FACTOR OF CO ISOTOPOLOGUES IN L 1551 SHIELDED FROM FUV PHOTODISSOCIATION. Astrophysical Journal, 2016, 826, 193.	4.5	18
56	DENSE MOLECULAR CLUMPS ASSOCIATED WITH THE LARGE MAGELLANIC CLOUD SUPERGIANT SHELLS LMC 4 AND LMC 5. Astrophysical Journal, 2014, 796, 123.	4.5	17
57	FIRST DETECTION OF [C I] ³ P ₁ – ³ P ₀ EMISSION FROM A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2015, 802, L7.	['] 8.3	17
58	An Observational Study for Grain Dynamics in the AS 209 Disk with Submillimeter Polarization*. Astrophysical Journal, 2019, 883, 16.	4.5	17
59	The Flared Gas Structure of the Transitional Disk around Sz 91. Astrophysical Journal, 2019, 871, 5.	4.5	16
60	¹⁴ N/ ¹⁵ N Isotopic Ratio in CH ₃ CN of Titan's Atmosphere Measured with ALMA. Astrophysical Journal, 2020, 890, 95.	4.5	16
61	The Core Mass Function in the Orion Nebula Cluster Region: What Determines the Final Stellar Masses?. Astrophysical Journal Letters, 2021, 910, L6.	8.3	15
62	Molecules with ALMA at Planet-forming Scales (MAPS). X. Studying Deuteration at High Angular Resolution toward Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 10.	7.7	15
63	Extremely Dense Cores Associated with Chandra Sources in Ophiuchus A: Forming Brown Dwarfs Unveiled?. Astrophysical Journal, 2018, 866, 141.	4.5	14
64	ALMA Observations of the Asymmetric Dust Disk around DM Tau. Astrophysical Journal, 2021, 911, 5.	4.5	14
65	High Spatial Resolution Observations of Molecular Lines toward the Protoplanetary Disk around TW Hya with ALMA. Astrophysical Journal, 2021, 914, 113.	4.5	14
66	Temperature Variations of Cold Dust in the Triangulum Galaxy M 33. Publication of the Astronomical Society of Japan, 2011, 63, 1139-1150.	2.5	11
67	Nobeyama 45 m mapping observations toward Orion A. I. Molecular outflows. Publication of the Astronomical Society of Japan, 2019, 71 , .	2.5	11
68	TW Hya: an old protoplanetary disc revived by its planet. Monthly Notices of the Royal Astronomical Society, $0, , .$	4.4	11
69	The 2006 Radio Outbursts of a Microquasar Cygnus X-3: Observations and Data. Publication of the Astronomical Society of Japan, 2008, 60, 465-473.	2.5	9
70	Nobeyama 45 m mapping observations toward Orion A. III. Multi-line observations toward an outflow-shocked region, Orion Molecular Cloud 2 FIR 4. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	9
71	The Detection of Dust Gap-ring Structure in the Outer Region of the CR Cha Protoplanetary Disk. Astrophysical Journal, 2020, 888, 72.	4.5	9
72	DESHIMA on ASTE: On-Sky Responsivity Calibration of the Integrated Superconducting Spectrometer. Journal of Low Temperature Physics, 2020, 199, 231-239.	1.4	9

#	Article	IF	CITATIONS
73	Massive Compact Dust Disk with a Gap around CW Tau Revealed by ALMA Multiband Observations. Astrophysical Journal, 2022, 930, 56.	4.5	9
74	Millimeter Continuum Observations of McNeil's Nebula Object. Publication of the Astronomical Society of Japan, 2005, 57, L21-L24.	2.5	8
75	An Observational Study of the Temperature and Surface Density Structures of a Typical Full Disk around MWC480. Publication of the Astronomical Society of Japan, 2013, 65, .	2.5	8
76	DETECTION OF STRONG MILLIMETER EMISSION FROM THE CIRCUMSTELLAR DUST DISK AROUND V1094 SCO: COLD AND MASSIVE DISK AROUND A T TAURI STAR IN A QUIESCENT ACCRETION PHASE?. Astrophysical Journal, 2011, 726, 45.	4.5	7
77	Investigating the gas-to-dust ratio in the protoplanetary disk of HD 142527. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	7
78	Model of a Gap Formed by a Planet with Fast Inward Migration. Astrophysical Journal, 2020, 892, 83.	4.5	7
79	Super-resolution Imaging of the Protoplanetary Disk HD 142527 Using Sparse Modeling. Astrophysical Journal, 2020, 895, 84.	4.5	7
80	ALMA Observation of the Protoplanetary Disk around WW Cha: Faint Double-peaked Ring and Asymmetric Structure. Astrophysical Journal, 2021, 909, 212.	4. 5	7
81	Search for sulfur-bearing species as remnant of cometary impact on Neptune. Planetary and Space Science, 2014, 104, 211-215.	1.7	6
82	SUBMILLIMETER OBSERVATION OF JUPITER'S STRATOSPHERIC COMPOSITION: DETECTION OF CARBON MONOSULFIDE (JÂ=Â7 â° 6) 19 YEARS AFTER THE COMETARY IMPACT. Astronomical Journal, 2016, 152, 179.	4.7	6
83	The Synthetic ALMA Multiband Analysis of the Dust Properties of the TW Hya Protoplanetary Disk. Astrophysical Journal, 2019, 872, 179.	4.5	6
84	ALMA Super-resolution Imaging of T Tau: $r=12$ au Gap in the Compact Dust Disk around T Tau N. Astrophysical Journal, 2021, 923, 121.	4.5	6
85	Unveiling the outer dust disc of TW Hya with deep ALMA observations. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 515, L23-L28.	3.0	6
86	A New Method for Direct Measurement of Isotopologue Ratios in Protoplanetary Disks: A Case Study of the ¹² CO/ ¹³ CO Ratio in the TW Hya Disk. Astrophysical Journal, 2022, 932, 126.	4.5	6
87	Subaru Near-infrared Imaging Polarimetry of Misaligned Disks around the SR 24 Hierarchical Triple System*. Astronomical Journal, 2020, 159, 12.	4.7	5
88	Detection of HC ¹⁸ O ⁺ in a Protoplanetary Disk: Exploring Oxygen Isotope Fractionation of CO. Astrophysical Journal, 2022, 926, 148.	4.5	5
89	ALMA High-resolution Multiband Analysis for the Protoplanetary Disk around TW Hya. Astrophysical Journal, 2022, 928, 49.	4.5	5
90	The C18O core mass function toward Orion A: Single-dish observations. Publication of the Astronomical Society of Japan, 2021, 73, 487-503.	2.5	3

#	Article	IF	Citations
91	EXTREMELY BRIGHT SUBMILLIMETER GALAXIES BEYOND THE LUPUS-I STAR-FORMING REGION. Astrophysical Journal, 2015, 808, 121.	4.5	2
92	Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255. Astronomy and Astrophysics, 2017, 597, A132.	5.1	2
93	A Belt-like Distribution of Gaseous Hydrogen Cyanide on Neptune's Equatorial Stratosphere Detected by ALMA. Astrophysical Journal Letters, 2020, 903, L1.	8.3	2
94	Wide-field Imaging Survey of Dust Continuum Emissions at $\hat{s} = \hat{s} = \hat{s} = 1.1 $	nd Lupus	0
95	Cold Dust and its Heating Sources in M 33. Proceedings of the International Astronomical Union, 2010, 6, 26-29.	0.0	0
96	Observational constraint on Pluto's atmospheric CO with ASTE. Publication of the Astronomical Society of Japan, 2016, 68, .	2.5	0
97	Detection of submillimeter-wave [C I]emission in gaseous debris disks of 49 Ceti and \hat{l}^2 Pictoris. Proceedings of the International Astronomical Union, 2017, 13, 81-87.	0.0	0
98	Possibility to locate the position of the H ₂ O snowline in protoplanetary disks through spectroscopic observations. Proceedings of the International Astronomical Union, 2018, 14, 393-395.	0.0	0
99	¹³ C Isotopic Ratios of HC ₃ N on Titan Measured with ALMA. Planetary Science Journal, 2021, 2, 166.	3.6	0