Piotr Jedrzejowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528332/publications.pdf

Version: 2024-02-01

623734 677142 1,017 140 14 22 citations g-index h-index papers 154 154 154 495 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Multisize no Migration Island-Based Differential Evolution Algorithm With Removal of Ineffective Islands. IEEE Access, 2022, 10, 34539-34549.	4.2	3
2	What are the career implications of "seeing eye to eye� Examining the role of leader–member exchange (LMX) agreement on employability and career outcomes. Personnel Psychology, 2021, 74, 799-830.	2.8	11
3	GEP-based classifier for mining imbalanced data. Expert Systems With Applications, 2021, 164, 114058.	7.6	12
4	A Population-Based Framework for Solving the Job Shop Scheduling Problem. Lecture Notes in Computer Science, 2021, , 347-359.	1.3	0
5	Designing RBFNs Structure Using Similarity-Based and Kernel-Based Fuzzy C-Means Clustering Algorithms. IEEE Access, 2021, 9, 4411-4422.	4.2	7
6	The Power of a Collective: Team of Agents Solving Instances of the Flow Shop and Job Shop Problems. Lecture Notes in Computer Science, 2021, , 406-419.	1.3	1
7	Imbalanced Data Mining Using Oversampling and Cellular GEP Ensemble. Lecture Notes in Computer Science, 2021, , 360-372.	1.3	1
8	Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification. IEEE Access, 2021, 9, 151386-151400.	4.2	4
9	Gene Expression Programming Classifier with Concept Drift Detection Based onÂFisher Exact Test. Smart Innovation, Systems and Technologies, 2020, , 203-211.	0.6	3
10	GEP-based classifier with drift detection for mining imbalanced data streams. Procedia Computer Science, 2020, 176, 41-49.	2.0	1
11	GEPâ€based classifiers with d riftâ€detection. Expert Systems, 2020, 38, e12571.	4.5	O
12	Parallelized Swarm Intelligence Approach for Solving TSP and JSSP Problems. Algorithms, 2020, 13, 142.	2.1	5
13	Apache Spark as a Tool for Parallel Population-Based Optimization. Smart Innovation, Systems and Technologies, 2020, , 181-190.	0.6	2
14	Experimental Evaluation of A-Teams Solving Resource Availability Cost Problem. Smart Innovation, Systems and Technologies, 2020, , 213-223.	0.6	2
15	Solving Job Shop Scheduling with Parallel Population-Based Optimization and Apache Spark. Smart Innovation, Systems and Technologies, 2020, , 3-13.	0.6	O
16	Implementing Gene Expression Programming in the Parallel Environment for Big Datasets' Classification. Vietnam Journal of Computer Science, 2019, 06, 163-175.	1.2	6
17	Gene Expression Programming as a data classification tool. A review. Journal of Intelligent and Fuzzy Systems, 2019, 36, 91-100.	1.4	12
18	An island-based differential evolution algorithm with the multi-size populations. Expert Systems With Applications, 2019, 126, 308-320.	7.6	14

#	Article	IF	Citations
19	Data reduction and stacking for imbalanced data classification. Journal of Intelligent and Fuzzy Systems, 2019, 37, 7239-7249.	1.4	6
20	A-Team Solving Distributed Resource-Constrained Multi-Project Scheduling Problem. Vietnam Journal of Computer Science, 2019, 06, 423-437.	1.2	2
21	An Approach to Imbalanced Data Classification Based on Instance Selection and Over-Sampling. Lecture Notes in Computer Science, 2019, , 601-610.	1.3	3
22	Overcoming "Big Data―Barriers in Machine Learning Techniques for the Real-Life Applications. Complexity, 2018, 2018, 1-3.	1.6	6
23	Incremental Gene Expression Programming Classifier with Metagenes and Data Reduction. Complexity, 2018, 2018, 1-12.	1.6	2
24	An Approach to Data Reduction for Learning from Big Datasets: Integrating Stacking, Rotation, and Agent Population Learning Techniques. Complexity, 2018, 2018, 1-13.	1.6	12
25	Learning Climate Perceptions as a Determinant of Employability: An Empirical Study Among European ICT Professionals. Frontiers in Psychology, 2018, 9, 2471.	2.1	14
26	Firefly Algorithm for the RBF Network Design. , 2018, , .		0
27	GEP-Based Ensemble Classifier with Drift-Detection. Lecture Notes in Computer Science, 2018, , 121-131.	1.3	1
28	Cluster-Based Instance Selection for the Imbalanced Data Classification. Lecture Notes in Computer Science, 2018, , 191-200.	1.3	3
29	Incremetal GEP-Based Ensemble Classifier. Smart Innovation, Systems and Technologies, 2018, , 61-70.	0.6	3
30	Parallel GEP Ensemble for Classifying Big Datasets. Lecture Notes in Computer Science, 2018, , 234-242.	1.3	1
31	A-Team Solving Distributed Resource-Constrained Multi-project Scheduling Problem. Lecture Notes in Computer Science, 2018, , 243-253.	1.3	3
32	An ensemble of the distance-based and Naive Bayes classifiers for the online classification with data reduction. Journal of Intelligent and Fuzzy Systems, 2017, 32, 1289-1296.	1.4	0
33	Learning from examples with data reduction and stacked generalization. Journal of Intelligent and Fuzzy Systems, 2017, 32, 1401-1411.	1.4	8
34	Gene Expression Programming Ensemble for Classifying Big Datasets. Lecture Notes in Computer Science, 2017, , 3-12.	1.3	4
35	Stacking and rotation-based technique for machine learning classification with data reduction. , 2017,		3
36	An approach to machine classification based on stacked generalization and instance selection. , 2016, , .		5

#	Article	IF	Citations
37	Distance-based online classifiers. Expert Systems With Applications, 2016, 60, 249-257.	7.6	5
38	Dynamic Cooperative Interaction Strategy for Solving RCPSP by a Team of Agents. Lecture Notes in Computer Science, 2016, , 454-463.	1.3	8
39	Employability and Job Performance as Links in the Relationship Between Mentoring Receipt and Career Success. Group and Organization Management, 2016, 41, 135-171.	4.4	57
40	Agent-Based RBF Network Classifier with Feature Selection in a Kernel Space. Cybernetics and Systems, 2016, 47, 17-31.	2.5	2
41	PLA Based Strategy for Solving MRCPSP by a Team of Agents. Smart Innovation, Systems and Technologies, 2016, , 305-315.	0.6	3
42	Kernel-Based Fuzzy C-Means Clustering Algorithm for RBF Network Initialization. Smart Innovation, Systems and Technologies, 2016, , 337-347.	0.6	4
43	Apache Spark Implementation of the Distance-Based Kernel-Based Fuzzy C-Means Clustering Classifier. Smart Innovation, Systems and Technologies, 2016, , 317-324.	0.6	0
44	Bi-criteria Data Reduction for Instance-Based Classification. Lecture Notes in Computer Science, 2016, , 444-453.	1.3	0
45	Properties of the Island-Based and Single Population Differential Evolution Algorithms Applied to Discrete-Continuous Scheduling. Smart Innovation, Systems and Technologies, 2016, , 349-359.	0.6	3
46	Cluster-dependent rotation-based feature selection for the RBF networks initialization. , 2015, , .		2
47	Ensemble Online Classifier Based on the One-Class Base Classifiers for Mining Data Streams. Cybernetics and Systems, 2015, 46, 51-68.	2.5	16
48	An Approach to RBF Initialization with Feature Selection. Advances in Intelligent Systems and Computing, 2015, , 671-682.	0.6	4
49	Distance-Based Ensemble Online Classifier with Kernel Clustering. Smart Innovation, Systems and Technologies, 2015, , 279-289.	0.6	4
50	Reinforcement Learning Strategy for Solving the MRCPSP by a Team of Agents. Smart Innovation, Systems and Technologies, 2015, , 537-548.	0.6	17
51	An Experimental Study of Scenarios for the Agent-Based RBF Network Design. Smart Innovation, Systems and Technologies, 2015, , 113-124.	0.6	1
52	A Hybrid Distance-Based and Naive Bayes Online Classifier. Lecture Notes in Computer Science, 2015, , 213-222.	1.3	2
53	Ensemble Classifier for Mining Data Streams. Procedia Computer Science, 2014, 35, 397-406.	2.0	16
54	Reinforcement Learning strategies for A-Team solving the Resource-Constrained Project Scheduling Problem. Neurocomputing, 2014, 146, 301-307.	5.9	27

#	Article	IF	Citations
55	Designing RBF Networks Using the Agent-Based Population Learning Algorithm. New Generation Computing, 2014, 32, 331-351.	3.3	6
56	Island-based Differential Evolution Algorithm for the Discrete-continuous Scheduling with Continuous Resource Discretisation. Procedia Computer Science, 2014, 35, 111-117.	2.0	8
57	A Family of the Online Distance-Based Classifiers. Lecture Notes in Computer Science, 2014, , 177-186.	1.3	4
58	Impact of Migration Topologies on Performance of Teams of Agents. Advances in Intelligent Systems and Computing, 2014, , 115-128.	0.6	1
59	Online Learning Based on Prototypes. Lecture Notes in Computer Science, 2014, , 187-196.	1.3	0
60	Reinforcement Learning Strategy for Solving the Resource-Constrained Project Scheduling Problem by a Team of A-Teams. Lecture Notes in Computer Science, 2014, , 197-206.	1.3	4
61	Consensus-based cluster merging for the prototype selection. , 2013, , .		0
62	Combining expression trees. , 2013, , .		6
63	Machine Learning and Multiagent Systems as Interrelated Technologies. Studies in Computational Intelligence, 2013, , 1-28.	0.9	4
64	Triple-Action Agents Solving the MRCPSP/Max Problem. Studies in Computational Intelligence, 2013, , 103-122.	0.9	1
65	Team of A-Teams - A Study of the Cooperation between Program Agents Solving Difficult Optimization Problems. Studies in Computational Intelligence, 2013, , 123-141.	0.9	9
66	Population learning with differential evolution for the discrete-continuous scheduling with continuous resource discretisation. , 2013, , .		5
67	Online Classifiers Based on Fuzzy C-means Clustering. Lecture Notes in Computer Science, 2013, , 427-436.	1.3	5
68	AGENT-BASED APPROACH TO THE DESIGN OF RBF NETWORKS. Cybernetics and Systems, 2013, 44, 155-172.	2.5	9
69	Agent-Based Population Learning Algorithm for RBF Network Tuning. Lecture Notes in Computer Science, 2013, , 41-51.	1.3	2
70	Agent-Based Data Reduction Using Ensemble Technique. Lecture Notes in Computer Science, 2013, , 447-456.	1.3	4
71	Structure vs. Efficiency of the Cross-Entropy Based Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation. Studies in Computational Intelligence, 2013, , 77-102.	0.9	6
72	Reinforcement Learning Strategy for A-Team Solving the Resource-Constrained Project Scheduling Problem. Lecture Notes in Computer Science, 2013, , 457-466.	1.3	1

#	Article	IF	CITATIONS
73	Teams of Agents for Solving the Resource-Constrained Project Scheduling Problem. Communications in Computer and Information Science, 2013, , 224-235.	0.5	1
74	SELECTING A REPRESENTATIVE DATA SET OF THE REQUIRED SIZE USING THE AGENT-BASED POPULATION LEARNING ALGORITHM. Cybernetics and Systems, 2012, 43, 303-318.	2.5	1
75	Study of the Migration Scheme Influence on Performance of A-Teams Solving the Job Shop Scheduling Problem. Lecture Notes in Computer Science, 2012, , 423-432.	1.3	0
76	GUEST EDITORIAL: KNOWLEDGE PROCESSING METHODOLOGIES IN INTELLIGENT AUTONOMOUS SYSTEMS. Cybernetics and Systems, 2011, 42, 283-286.	2.5	0
77	An agent-based framework for distributed learning. Engineering Applications of Artificial Intelligence, 2011, 24, 93-102.	8.1	13
78	Experimental evaluation of two new GEP-based ensemble classifiers. Expert Systems With Applications, 2011, 38, 10932-10939.	7.6	22
79	POPULATION-BASED MULTI-AGENT APPROACH TO SOLVING MACHINE LEARNING PROBLEMS. Cybernetics and Systems, 2011, 42, 341-357.	2.5	1
80	A consensus-based approach to the distributed learning. , 2011, , .		3
81	Machine Learning and Agents. Lecture Notes in Computer Science, 2011, , 2-15.	1.3	6
82	A New Cluster-based Instance Selection Algorithm. Lecture Notes in Computer Science, 2011, , 436-445.	1.3	7
83	Parallel Cooperating A-Teams Solving Instances of the Euclidean Planar Travelling Salesman Problem. Lecture Notes in Computer Science, 2011, , 456-465.	1.3	4
84	A-Team for Solving MRCPSP/max Problem. Lecture Notes in Computer Science, 2011, , 466-475.	1.3	2
85	Rotation Forest with GEP-Induced Expression Trees. Lecture Notes in Computer Science, 2011, , 495-503.	1.3	7
86	Parallel Cooperating A-Teams. Lecture Notes in Computer Science, 2011, , 322-331.	1.3	10
87	Application of agent-based simulated annealing and tabu search procedures to solving the data reduction problem. International Journal of Applied Mathematics and Computer Science, 2011, 21, 57-68.	1.5	8
88	An A-Team approach to learning classifiers from distributed data sources. International Journal of Intelligent Information and Database Systems, 2010, 4, 245.	0.3	5
89	An Approach to Data Reduction and Integrated Machine Classification. New Generation Computing, 2010, 28, 21-40.	3.3	21
90	A cross-entropy-based population-learning algorithm for discrete-continuous scheduling with continuous resource discretisation. Neurocomputing, 2010, 73, 655-660.	5.9	6

#	Article	IF	Citations
91	Supervisor-Subordinate Age Dissimilarity and Performance Ratings: The Buffering Effects of Supervisory Relationship and Practice. International Journal of Aging and Human Development, 2010, 71, 231-258.	1.6	14
92	Implementation and performance evaluation of the agent-based algorithm for ANN training. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2010, 14, 1-10.	1.0	2
93	A Cross-Entropy Based Population Learning Algorithm for Multi-mode Resource-Constrained Project Scheduling Problem with Minimum and Maximum Time Lags. Lecture Notes in Computer Science, 2010, , 383-392.	1.3	1
94	JABAT Middleware as a Tool for Solving Optimization Problems. Lecture Notes in Computer Science, 2010, , 181-195.	1.3	14
95	Constructing Ensemble Classifiers from Expression Trees. , 2010, , .		0
96	Influence of the Working Strategy on A-Team Performance. Studies in Computational Intelligence, 2010, , 83-102.	0.9	20
97	An Agent-Based Simulated Annealing Algorithm for Data Reduction. Lecture Notes in Computer Science, 2010, , 130-139.	1.3	1
98	Experimental Investigation of the Synergetic Effect Produced by Agents Solving Together Instances of the Euclidean Planar Travelling Salesman Problem. Lecture Notes in Computer Science, 2010, , 160-169.	1.3	3
99	Cellular GEP-Induced Classifiers. Lecture Notes in Computer Science, 2010, , 343-352.	1.3	18
100	Cluster Integration for the Cluster-Based Instance Selection. Lecture Notes in Computer Science, 2010, , 353-362.	1.3	7
101	Employability Management Needs Analysis for the ICT sector in Europe: The Case of Small and Medium-sized Enterprises. Journal of CENTRUM Cathedra (JCC) the Business and Economics Research Journal, 2010, 3, 182-200.	0.4	4
102	Evaluation of Agents Performance within the A-Team Solving RCPSP/Max Problem. Lecture Notes in Computer Science, 2010, , 393-402.	1.3	0
103	Agent-Based Gene Expression Programming for Solving the RCPSP/max Problem. Lecture Notes in Computer Science, 2009, , 203-212.	1.3	11
104	Employability management practices in the Polish ICT sector. Human Resource Development International, 2009, 12, 471-492.	4.0	12
105	Agent-Based Approach to the Dynamic Vehicle Routing Problem. Advances in Intelligent and Soft Computing, 2009, , 169-178.	0.2	10
106	Solving the RCPSP/max Problem by the Team of Agents. Lecture Notes in Computer Science, 2009, , 734-743.	1.3	13
107	Employability and the psychological contract in European ICT sector SMEs. International Journal of Human Resource Management, 2008, 19, 1035-1055.	5.3	77
108	Multi-agent platform for solving the dynamic vehicle routing problem. , 2008, , .		12

#	Article	IF	Citations
109	Web Accessible A-Team Middleware. Lecture Notes in Computer Science, 2008, , 624-633.	1.3	4
110	Agent-Based Approach to Solving the Resource Constrained Project Scheduling Problem. Lecture Notes in Computer Science, 2007, , 480-487.	1.3	12
111	An Agent-Based Approach to the Multiple-Objective Selection of Reference Vectors. Lecture Notes in Computer Science, 2007, , 117-130.	1.3	7
112	Implementation and Performance Evaluation of the Agent-Based Algorithm for ANN Training. Lecture Notes in Computer Science, 2007, , 131-140.	1.3	3
113	Scheduling Multiple-version Programs on Multiple Processors. Studies in Computational Intelligence, 2007, , 301-328.	0.9	0
114	An Investigation of Agent-Based Hybrid Approach to Solve Flowshop and Job-Shop Scheduling Problems. Lecture Notes in Computer Science, 2007, , 172-179.	1.3	1
115	An Agent-Based Algorithm for Data Reduction. , 2007, , 351-356.		2
116	Population Learning Algorithm for the Resource-Constrained Project Scheduling., 2006,, 275-296.		3
117	An agent-based approach to ANN training. Knowledge-Based Systems, 2006, 19, 304-308.	7.1	15
118	A Population Learning Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation. , 2006, , .		4
119	JADE-Based A-Team as a Tool for Implementing Population-Based Algorithms. , 2006, , .		19
120	An Agent-Based Approach to ANN Training. , 2006, , 191-201.		1
121	Family of Instance Reduction Algorithms Versus Other Approaches. , 2005, , 23-30.		3
122	An Island-Based Evolution Algorithm for Discrete-Continuous Scheduling with Continuous Resource Discretisation. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2005, 9, 368-371.	0.9	0
123	A Neural Network Based Morphological Analyser of the Natural Language. , 2005, , 199-208.		3
124	An Approach to Instance Reduction in Supervised Learning. , 2004, , 267-280.		24
125	Probability Distribution of Solution Time in ANN Training Using Population Learning Algorithm. Lecture Notes in Computer Science, 2004, , 172-177.	1.3	О
126	Population-Based Approach to Multiprocessor Task Scheduling in Multistage Hybrid Flowshops. Lecture Notes in Computer Science, 2003, , 279-286.	1.3	10

#	Article	lF	CITATIONS
127	Population Learning Algorithm for Resource-Constrained Project Scheduling. , 2003, , 223-228.		3
128	Population Learning Metaheuristic for Neural Network Training., 2003,, 161-166.		5
129	Evolution-based scheduling of multiple variant and multiple processor programs. Future Generation Computer Systems, 2001, 17, 405-414.	7.5	9
130	Scheduling Multiprocessor Tasks with Correlated Failures Using Population Learning Algorithm., 2001,, 296-299.		0
131	Scheduling multiple variant programs under hard real-time constraints. European Journal of Operational Research, 2000, 127, 458-465.	5.7	5
132	Artificial Neural Network for Multiprocessor Tasks Scheduling. , 2000, , 207-216.		3
133	An Island-Based Evolutionary Algorithm for Maximizing Schedule Reliability. , 2000, , 344-349.		0
134	Scheduling Fault-Tolerant Programs on Multiple Processors to Maximize Schedule Reliability. Lecture Notes in Computer Science, 1999, , 385-395.	1.3	1
135	Reliability prediction and estimation of PROLOG programs. IEEE Transactions on Reliability, 1994, 43, 542-549.	4.6	3
136	An approach to the reliability optimization of software with redundancy. IEEE Transactions on Software Engineering, 1991, 17, 310-312.	5.6	39
137	Fault-tolerant programs and their reliability. IEEE Transactions on Reliability, 1990, 39, 184-192.	4.6	35
138	An overview on available models and techniques for the multicriteria reliability problem with emphasis on a potential use in a DSS for this problem type. Annals of Operations Research, 1988, 16, 413-423.	4.1	4
139	Minimizing the Average Cost of Testing Coherent Systems: Complexity and Approximate Algorithms. IEEE Transactions on Reliability, 1983, R-32, 66-70.	4.6	5
140	Allocation of Resources to Maximize Quality Measure of a System. IEEE Transactions on Reliability, 1982, R-31, 105-108.	4.6	4