
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5283223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
2	Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 2007, 144, 1890-1898.	2.3	736
3	Phylogenetic biome conservatism on a global scale. Nature, 2009, 458, 754-756.	13.7	588
4	Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 2011, 190, 724-739.	3.5	445
5	Testing the Impact of Calibration on Molecular Divergence Times Using a Fossil-Rich Group: The Case of Nothofagus (Fagales). Systematic Biology, 2012, 61, 289-313.	2.7	351
6	Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography, 2011, 38, 1635-1656.	1.4	324
7	Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14489-14493.	3.3	262
8	Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytologist, 2010, 188, 1113-1123.	3.5	246
9	Evolution of stomatal responsiveness to CO ₂ and optimization of waterâ€use efficiency among land plants. New Phytologist, 2009, 183, 839-847.	3.5	207
10	Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. Plant, Cell and Environment, 2009, 32, 1584-1595.	2.8	176
11	Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell and Environment, 2014, 37, 124-131.	2.8	166
12	Unified changes in cell size permit coordinated leaf evolution. New Phytologist, 2013, 199, 559-570.	3.5	154
13	Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. American Journal of Botany, 2005, 92, 789-796.	0.8	141
14	Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant, Cell and Environment, 2012, 35, 1407-1418.	2.8	136
15	Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 2011, 192, 437-448.	3.5	135
16	A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences. Ecology, 2009, 90, 1762-1772.	1.5	125
17	Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 275-284.	1.8	118
18	The evolutionary history of Nothofagus (Nothofagaceae). Australian Systematic Botany, 1993, 6, 111.	0.3	114

#	Article	IF	CITATIONS
19	Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 2007, 33, 574-589.	1.3	107
20	Pliocene reversal of late Neogene aridification. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1999-2004.	3.3	103
21	The harvested side of edges: Effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. Forest Ecology and Management, 2013, 302, 107-121.	1.4	99
22	The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. American Journal of Botany, 2008, 95, 521-530.	0.8	95
23	Giant eucalypts – globally unique fireâ€adapted rainâ€forest trees?. New Phytologist, 2012, 196, 1001-1014.	3.5	95
24	Internal coordination between hydraulics and stomatal control in leaves. Plant, Cell and Environment, 2008, 31, 1557-1564.	2.8	93
25	Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian Blue Gum). Heredity, 1999, 83, 179-187.	1.2	91
26	Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms. Oecologia, 2012, 168, 1-10.	0.9	87
27	Paleoâ€Antarctic rainforest into the modern Old World tropics: The rich past and threatened future of the "southern wet forest survivors― American Journal of Botany, 2014, 101, 2121-2135.	0.8	87
28	Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 2015, 40, 1-13.	1.1	85
29	Extent and timing of floristic exchange between Australian and Asian rain forests. Journal of Biogeography, 2011, 38, 1445-1455.	1.4	79
30	Environmental adaptation in stomatal size independent of the effects of genome size. New Phytologist, 2015, 205, 608-617.	3.5	75
31	A practical guide to DNA metabarcoding for entomological ecologists. Ecological Entomology, 2020, 45, 373-385.	1.1	75
32	The major Australian cool temperate rainforest tree <i>Nothofagus cunninghamii </i> withstood Pleistocene glacial aridity within multiple regions: evidence from the chloroplast. New Phytologist, 2009, 182, 519-532.	3.5	74
33	Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Australian Journal of Botany, 2000, 48, 561.	0.3	70
34	Leaf Cuticular Morphology Links Platanaceae and Proteaceae. International Journal of Plant Sciences, 2005, 166, 843-855.	0.6	70
35	Fossil evidence for a hyperdiverse sclerophyll flora under a non–Mediterranean-type climate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3423-3428.	3.3	70
36	A critical framework for the assessment of biological palaeoproxies: predicting past climate and levels of atmospheric CO ₂ from fossil leaves. New Phytologist, 2011, 192, 29-44.	3.5	68

#	Article	IF	CITATIONS
37	Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. Forest Ecology and Management, 2014, 334, 174-184.	1.4	65
38	Seed ferns survived the endâ€Cretaceous mass extinction in Tasmania. American Journal of Botany, 2008, 95, 465-471.	0.8	64
39	Fossil evidence for open, Proteaceaeâ€dominated heathlands and fire in the Late Cretaceous of Australia. American Journal of Botany, 2015, 102, 2092-2107.	0.8	63
40	Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Annals of Botany, 2016, 118, 1127-1138.	1.4	63
41	An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Australian Journal of Botany, 2001, 49, 333.	0.3	62
42	Wheat leaves embolized by water stress do not recover function upon rewatering. Plant, Cell and Environment, 2018, 41, 2704-2714.	2.8	59
43	Key Periods in the Evolution of the Flora and Vegetation in Western Tasmania .I. The Early-Middle Pleistocene. Australian Journal of Botany, 1993, 41, 673.	0.3	58
44	Near-tropical Early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology, 2012, 40, 267-270.	2.0	56
45	The Phylogenetic Affinities of Nothofagus (Nothofagaceae) Leaf Fossils based on Combined Molecular and Morphological Data. International Journal of Plant Sciences, 1999, 160, 1177-1188.	0.6	49
46	Short- and long-term benefits for forest biodiversity of retaining unlogged patches in harvested areas. Forest Ecology and Management, 2015, 353, 187-195.	1.4	49
47	Do leaves of plants on phosphorusâ€impoverished soils contain high concentrations of phenolic defence compounds?. Functional Ecology, 2010, 24, 52-61.	1.7	46
48	Environmental niche modelling fails to predict <scp>L</scp> ast <scp>G</scp> lacial <scp>M</scp> aximum refugia: niche shifts, microrefugia or incorrect palaeoclimate estimates?. Global Ecology and Biogeography, 2014, 23, 1186-1197.	2.7	46
49	Using fossil leaves as evidence for open vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395, 168-175.	1.0	45
50	Extinct conifers and conifer diversity in the Early Pleistocene of western Tasmania. Review of Palaeobotany and Palynology, 1995, 84, 375-387.	0.8	44
51	A Middleâ€Late Eocene inflorescence of Caryophyllaceae from Tasmania, Australia. American Journal of Botany, 2003, 90, 761-768.	0.8	44
52	Epiphytic ferns and bryophytes of Tasmanian tree-ferns: A comparison of diversity and composition between two host species. Austral Ecology, 2005, 30, 146-154.	0.7	44
53	Testing the Biases in the Rich Cenozoic Angiosperm Macrofossil Record. International Journal of Plant Sciences, 2016, 177, 371-388.	0.6	44
54	Taxodiaceous Macrofossils from Tertiary and Quaternary Sediments in Tasmania. Australian Systematic Botany, 1993, 6, 237.	0.3	44

#	Article	IF	CITATIONS
55	Uncertainty in Palaeoclimatic Reconstructions Based on Leaf Physiognomy. Australian Journal of Botany, 1997, 45, 527.	0.3	43
56	Augmentation of abscisic acid (ABA) levels by drought does not induce short-term stomatal sensitivity to CO2 in two divergent conifer species. Journal of Experimental Botany, 2011, 62, 195-203.	2.4	43
57	Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiology, 2017, 37, 869-878.	1.4	43
58	Microclimatic edge effects in a recently harvested forest: Do remnant forest patches create the same impact as large forest areas?. Forest Ecology and Management, 2016, 365, 128-136.	1.4	42
59	Palaeoendemic plants provide evidence for persistence of open, wellâ€watered vegetation since the <scp>C</scp> retaceous. Global Ecology and Biogeography, 2016, 25, 127-140.	2.7	41
60	Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves. New Phytologist, 2018, 219, 1224-1234.	3.5	41
61	Evidence of Pleistocene plant extinction and diversity from Regatta Point, western Tasmania, Australia. Botanical Journal of the Linnean Society, 1997, 123, 45-71.	0.8	40
62	How does ontogeny in a Eucalyptus species affect patterns of herbivory by Brushtail Possums?. Functional Ecology, 2006, 20, 982-988.	1.7	38
63	Evolutionary radiations of Proteaceae are triggered by the interaction between traits and climates in open habitats. Clobal Ecology and Biogeography, 2016, 25, 1239-1251.	2.7	37
64	Susceptibility of Eucalyptus globulus ssp. globulus to sawfly (Perga affinis ssp. insularis) attack and its potential impact on plantation productivity. Forest Ecology and Management, 2002, 160, 189-199.	1.4	36
65	Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Australian Systematic Botany, 2009, 22, 219.	0.3	36
66	Chloroplast evidence for geographic stasis of the Australian bird-dispersed shrub Tasmannia lanceolata (Winteraceae). Molecular Ecology, 2010, 19, 2949-2963.	2.0	36
67	Late Pleistocene Vegetation and Climate Near Melaleuca Inlet, South-Western Tasmania. Australian Journal of Botany, 1991, 39, 315.	0.3	35
68	Banksieaephyllum taylorii (Proteaceae) from the late paleocene of New South Wales and its relevance to the origin of Australia's scleromorphic flora. Australian Systematic Botany, 1994, 7, 385.	0.3	35
69	Past and present variability in leaf length of evergreen members of Nothofagus subgenus Lophozonia related to ecology and population dynamics. New Phytologist, 1994, 127, 377-390.	3.5	34
70	A Toothed Lauraceae Leaf from the Early Eocene of Tasmania, Australia. International Journal of Plant Sciences, 2007, 168, 1191-1198.	0.6	33
71	The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene–Early Miocene Gore Lignite Measures, southern New Zealand. International Journal of Coal Geology, 2010, 83, 173-181.	1.9	33
72	Fossil Ericaceae from New Zealand: Deconstructing the use of fossil evidence in historical biogeography. American Journal of Botany, 2010, 97, 59-70.	0.8	33

#	Article	IF	CITATIONS
73	Climate drives vein anatomy in Proteaceae. American Journal of Botany, 2013, 100, 1483-1493.	0.8	32
74	Accuracy of ancestral state reconstruction for non-neutral traits. Scientific Reports, 2020, 10, 7644.	1.6	32
75	Early Tertiary Macrofossils of Proteaceae from Tasmania. Australian Systematic Botany, 1997, 10, 533.	0.3	31
76	How do soil nutrients affect within-plant patterns of herbivory in seedlings of Eucalyptus nitens?. Oecologia, 2006, 150, 409-420.	0.9	31
77	Living near the edge: Being close to mature forest increases the rate of succession in beetle communities. Ecological Applications, 2015, 25, 800-811.	1.8	31
78	High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany, 2011, 24, 121.	0.3	30
79	Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil. Frontiers in Plant Science, 2014, 5, 527.	1.7	30
80	Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna. PLoS ONE, 2013, 8, e84378.	1.1	29
81	The Spatial Pattern and Scale of Variation in Eucalyptus globulus ssp Globulus: Variation in Seedling Abnormalities and Early Growth. Australian Journal of Botany, 1994, 42, 471.	0.3	28
82	The macrofossil record of Proteaceae in Tasmania: a review with new species. Australian Systematic Botany, 1998, 11, 465.	0.3	28
83	Impacts on soils from cable-logging steep slopes in northeastern Tasmania, Australia. Forest Ecology and Management, 2001, 144, 91-99.	1.4	28
84	Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials. Annals of Botany, 2011, 108, 1247-1256.	1.4	27
85	A Permeable Cuticle, Not Open Stomata, Is the Primary Source of Water Loss From Expanding Leaves. Frontiers in Plant Science, 2020, 11, 774.	1.7	27
86	Early evidence of xeromorphy in angiosperms: Stomatal encryption in a new eocene species of <i>Banksia</i> (Proteaceae) from Western Australia. American Journal of Botany, 2014, 101, 1486-1497.	0.8	26
87	Why we should retain Nothofagus sensu lato. Australian Systematic Botany, 2015, 28, 190.	0.3	26
88	The Cenozoic history of New Zealand temperate rainforests: comparisons with southern Australia and South America. New Zealand Journal of Botany, 2016, 54, 100-127.	0.8	26
89	An Early to Middle Pleistocene Flora of Subalpine Affinities in Lowland Western Tasmania. Australian Journal of Botany, 1995, 43, 231.	0.3	24
90	Leaf fossils of <i>Banksia</i> (Proteaceae) from New Zealand: An Australian abroad. American Journal of Botany, 2010, 97, 288-297.	0.8	24

#	Article	IF	CITATIONS
91	Past, present and future refugia for Tasmania's palaeoendemic flora. Journal of Biogeography, 2017, 44, 1537-1546.	1.4	24
92	Linking changes in community composition and function under climate change. Ecological Applications, 2015, 25, 2132-2141.	1.8	23
93	Succession of mosses, liverworts and ferns on coarse woody debris, in relation to forest age and log decay in Tasmanian wet eucalypt forest. Forest Ecology and Management, 2010, 260, 1896-1905.	1.4	22
94	Leaf fossils of the ancient Tasmanian relict <i>Microcachrys</i> (Podocarpaceae) from New Zealand. American Journal of Botany, 2011, 98, 1164-1172.	0.8	22
95	<i>Nothofagus</i> subgenus <i>Brassospora</i> (Nothofagaceae) leaf fossils from New Zealand: a link to Australia and New Guinea?. Botanical Journal of the Linnean Society, 2014, 174, 503-515.	0.8	20
96	Trophic position determines functional and phylogenetic recovery after disturbance within a community. Functional Ecology, 2017, 31, 1441-1451.	1.7	20
97	Two new Banksia species from pleistocene sediments in western Tasmania. Australian Systematic Botany, 1991, 4, 499.	0.3	19
98	Contrasts between the Climatic Ranges of Fossil and Extant Taxa: Causes and Consequences for Palaeoclimatic Estimates. Australian Journal of Botany, 1997, 45, 465.	0.3	19
99	Macrofossils associated with the fossil fern spore Cyatheacidites annulatus and their significance for Southern hemisphere biogeography. Review of Palaeobotany and Palynology, 2001, 116, 195-202.	0.8	19
100	Eucryphia (Cunoniaceae) reproductive and leaf macrofossils from Australian cainozoic sediments. Australian Systematic Botany, 2000, 13, 373.	0.3	18
101	Microsatellites for use in Nothofagus cunninghamii (Nothofagaceae) and related species. Molecular Ecology Notes, 2003, 4, 14-16.	1.7	18
102	Wind Affects Morphology, Function, and Chemistry of Eucalypt Tree Seedlings. International Journal of Plant Sciences, 2010, 171, 73-80.	0.6	18
103	Impact of distance to mature forest on the recolonisation of bryophytes in a regenerating Tasmanian wet eucalypt forest. Australian Journal of Botany, 2013, 61, 633.	0.3	18
104	Arbutin Derivatives Isolated from Ancient Proteaceae: Potential Phytochemical Markers Present in <i>Bellendena</i> , <i>Cenarrhenes</i> , and <i>Persoonia</i> Genera. Journal of Natural Products, 2018, 81, 1241-1251.	1.5	18
105	Intraspecific variation in drought susceptibility in Eucalyptus globulus is linked to differences in leaf vulnerability. Functional Plant Biology, 2019, 46, 286.	1.1	18
106	Leaf fossils of Proteaceae tribe Persoonieae from the Late Oligocene - Early Miocene of New Zealand. Australian Systematic Botany, 2010, 23, 1.	0.3	17
107	Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii. Heredity, 2016, 116, 99-106.	1.2	17
108	Early seedling establishment on aged Tasmanian tin mine tailings constrained by nutrient deficiency and soil structure, not toxicity. Soil Research, 2017, 55, 692.	0.6	17

#	Article	IF	CITATIONS
109	Incontinence in aging leaves: deteriorating water relations with leaf age in Agastachys odorata (Proteaceae), a shrub with very long-lived leaves. Functional Plant Biology, 2007, 34, 918.	1.1	16
110	Last interglacial climates of south-eastern Australia: plant and beetle-based reconstructions from Yarra Creek, King Island, Tasmania. Quaternary Science Reviews, 2009, 28, 3197-3210.	1.4	16
111	Transient hybridization, not homoploid hybrid speciation, between ancient and deeply divergent conifers. American Journal of Botany, 2016, 103, 246-259.	0.8	16
112	The dimensionality of niche space allows bounded and unbounded processes to jointly influence diversification. Nature Communications, 2018, 9, 4258.	5.8	16
113	Proteaceae leaf fossils from the Oligo - Miocene of New Zealand: new species and evidence of biome and trait conservatism. Australian Systematic Botany, 2012, 25, 375.	0.3	15
114	Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway. Annals of Botany, 2017, 120, 539-549.	1.4	15
115	Early ontogenetic trajectories vary among defence chemicals in seedlings of a fastâ€growing eucalypt. Austral Ecology, 2010, 35, 157-166.	0.7	14
116	Whole range and regionalâ€based ecological niche models predict differing exposure to 21st century climate change in the key cool temperate rainforest tree southern beech (<scp><i>N</i></scp> <i>othofagus cunninghamii</i>). Austral Ecology, 2015, 40, 126-138.	0.7	14
117	The impacts of leaf shape and arrangement on light interception and potential photosynthesis in southern beech (Nothofagus cunninghamii). Functional Plant Biology, 2004, 31, 471.	1.1	14
118	Does moisture affect the partitioning of bryophytes between terrestrial and epiphytic substrates within cool temperate rain forests?. Bryologist, 2009, 112, 506-519.	0.1	13
119	Diverse Fossil Epacrids (Styphelioideae; Ericaceae) from Early Pleistocene Sediments at Stony Creek Basin, Victoria, Australia. International Journal of Plant Sciences, 2007, 168, 1359-1376.	0.6	12
120	Phylogeny and infrageneric classification of Correa Andrews (Rutaceae) on the basis of nuclear and chloroplast DNA. Plant Systematics and Evolution, 2010, 288, 127-138.	0.3	12
121	Characteristics of mammal communities in Tasmanian forests: exploring the influence of forest type and disturbance history. Wildlife Research, 2011, 38, 13.	0.7	12
122	Fire is a major driver of patterns of genetic diversity in two coâ€occurring Tasmanian palaeoendemic conifers. Journal of Biogeography, 2017, 44, 1254-1267.	1.4	12
123	Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms. PLoS ONE, 2017, 12, e0185648.	1.1	12
124	Identifying regrowth forests with advanced mature forest values. Forest Ecology and Management, 2019, 433, 73-84.	1.4	12
125	A common boundary between distinct northern and southern morphotypes in two unrelated Tasmanian rainforest species. Australian Journal of Botany, 2000, 48, 481.	0.3	12
126	A new early pleistocene species of Nothofagus and the climatic implications of co-occurring Nothofagus fossils. Australian Systematic Botany, 1999, 12, 757.	0.3	11

#	Article	IF	CITATIONS
127	Water loss physiology and the evolution within the Tasmanian conifer genus Athrotaxis (Cupressaceae). Australian Journal of Botany, 2004, 52, 765.	0.3	11
128	Is there a â€~suboptimal' woody species height? A response to Scheffer et al Trends in Ecology and Evolution, 2015, 30, 4-5.	4.2	11
129	Oloigocene leaves of Epacidaceae from Little Rapid River, Tasmania, and the identification of fossil Epacidaceae leaves. Australian Systematic Botany, 1995, 8, 71.	0.3	10
130	Eocene continental climates and latitudinal temperature gradients: Comment and Reply. Geology, 1996, 24, 1054.	2.0	10
131	Temporal persistence of edge effects on bryophytes within harvested forests. Forest Ecology and Management, 2016, 375, 223-229.	1.4	10
132	Vein density is independent of epidermal cell size in Arabidopsis mutants. Functional Plant Biology, 2017, 44, 410.	1.1	10
133	Extended differentiation of veins and stomata is essential forÂthe expansion of large leaves in <i>Rheum rhabarbarum</i> . American Journal of Botany, 2018, 105, 1967-1974.	0.8	10
134	Early-Middle Pleistocene leaves of extinct and extant Proteaceae from western Tasmania, Australia. Botanical Journal of the Linnean Society, 1995, 118, 19-35.	0.8	9
135	Reproductive success of a colony of the introduced bumblebee Bombus terrestris (L.) (Hymenoptera:) Tj ETQq1 :	l 0,784314 1.1	4 rgBT /Overl
136	Bird assemblages in Tasmanian clearcuts are influenced by the age of eucalypt regeneration but not by distance from mature forest. Global Ecology and Conservation, 2014, 2, 138-147.	1.0	9
137	Gondwanan conifer clones imperilled by bushfire. Scientific Reports, 2016, 6, 33930.	1.6	9
138	Quantifying floristic and structural forest maturity: An attributeâ€based method for wet eucalypt forests. Journal of Applied Ecology, 2018, 55, 1668-1681.	1.9	9
139	<scp>DNA</scp> metabarcoding captures subtle differences in forest beetle communities following disturbance. Restoration Ecology, 2020, 28, 1475-1484.	1.4	9
140	Links between environment and stomatal size through evolutionary time in Proteaceae. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192876.	1.2	9
141	Evolutionary and ecological significance of photosynthetic organs in <i>Phyllocladus</i> (Podocarpaceae). Botanical Journal of the Linnean Society, 2021, 196, 343-363.	0.8	9
142	An in situ, Late Pleistocene Melaleuca fossil forest at Coal Head, western Tasmania, Australia. Australian Journal of Botany, 2001, 49, 235.	0.3	8
143	Letting giants be – rethinking active fire management of oldâ€growth eucalypt forest in the <scp>A</scp> ustralian tropics. Journal of Applied Ecology, 2014, 51, 555-559.	1.9	8
144	Fossil leaves of Banksia, Banksieae and pretenders: resolving the fossil genus Banksieaephyllum. Australian Systematic Botany, 2016, 29, 126.	0.3	8

#	Article	IF	CITATIONS
145	Distance, environmental and substrate factors impacting recovery of bryophyte communities after harvesting. Applied Vegetation Science, 2018, 21, 64-75.	0.9	8
146	New Macrofossils of the Australian Cycad <i>Bowenia</i> and Their Significance in Reconstructing the Past Morphological Range of the Genus. International Journal of Plant Sciences, 2019, 180, 128-140.	0.6	8
147	Giant cuticular pores in <i>Eidothea zoexylocarya</i> (Proteaceae) leaves. American Journal of Botany, 2007, 94, 1282-1288.	0.8	7
148	Towards understanding the fossil record better: Insights from recently deposited plant macrofossils in a sclerophyll-dominated subalpine environment. Review of Palaeobotany and Palynology, 2016, 233, 1-11.	0.8	7
149	Stable states in soil chemistry persist in eucalypt woodland restorations. Applied Vegetation Science, 2019, 22, 105-114.	0.9	7
150	Tree crown segmentation and species classification in a wet eucalypt forest from airborne hyperspectral and LiDAR data. International Journal of Remote Sensing, 2021, 42, 7952-7977.	1.3	7
151	Two fossil species of <i>Metrosideros</i> (Myrtaceae) from the Oligoâ€Miocene Golden Fleece locality in Tasmania, Australia. American Journal of Botany, 2017, 104, 891-904.	0.8	6
152	Relationships between coarse woody debris habitat quality and forest maturity attributes. Conservation Science and Practice, 2019, 1, e55.	0.9	6
153	Leaf hydraulic conductance is linked to leaf symmetry in bifacial, amphistomatic leaves of sunflower. Journal of Experimental Botany, 2020, 71, 2808-2816.	2.4	6
154	Mosses from Early Pleistocene sediments in western Tasmania. Alcheringa, 1995, 19, 291-296.	0.5	5
155	Development of nuclear and mitochondrial microsatellite markers for the relictual conifer genus Athrotaxis (Cupressaceae). Conservation Genetics Resources, 2015, 7, 477-481.	0.4	5
156	Deep history of wildfire in Australia. Australian Journal of Botany, 2016, 64, 557.	0.3	5
157	A paleobiogeographical scenario for the Taxaceae based on a revised fossil wood record and embolism resistance. Review of Palaeobotany and Palynology, 2019, 263, 147-158.	0.8	5
158	Data obtained from acoustic recording units and from field observer point counts of Tasmanian forest birds are similar but not the same. , 0, 35, 30-39.		5
159	Leaf gigantism in coastal areas: morphological and physiological variation in four species on the Tasman Peninsula, Tasmania. Australian Journal of Botany, 2005, 53, 91.	0.3	4
160	The effectiveness of streamside versus upslope reserves in conserving log-associated bryophytes of native production forests. Forest Ecology and Management, 2016, 373, 66-73.	1.4	4
161	Natural products isolation studies of the paleoendemic plant species Nothofagus gunnii and Nothofagus cunninghamii. Fìtoterapìâ, 2022, 156, 105088.	1.1	4
162	Araucaria Section Eutacta Macrofossils from the Cenozoic of Southeastern Australia. International Journal of Plant Sciences, 2019, 180, 902-921.	0.6	3

#	Article	IF	CITATIONS
163	Evidence of Pleistocene plant extinction and diversity from Regatta Point, western Tasmania, Australia. Botanical Journal of the Linnean Society, 1997, 123, 45-71.	0.8	3
164	Drought Tolerance and Avoidance in the Localised and Endemic Leptospermum grandiflorum and Co-occurring Species. Australian Systematic Botany, 1993, 6, 559.	0.3	3
165	Morphometric analysis of Correa lawrenceana (Rutaceae) and the reinstatement of var. ferruginea endemic to Tasmania. Australian Systematic Botany, 2013, 26, 255.	0.3	2
166	Fire in Australia: how was the biota prepared for human occupation?. Australian Journal of Botany, 2016, 64, 555.	0.3	2
167	Development of 15 nuclear EST microsatellite markers for the paleoendemic coniferPherosphaera hookeriana(Podocarpaceae). Applications in Plant Sciences, 2018, 6, e01160.	0.8	2
168	Metabarcoding reveals landscape drivers of beetle community composition approximately 50Âyears after timber harvesting. Forest Ecology and Management, 2021, 488, 119020.	1.4	2
169	Tropical palms and arums at near-polar latitudes: fossil pollen evidence from the Tamar and Macquarie grabens, northern Tasmania. Papers and Proceedings - Royal Society of Tasmania, 2015, 149, 23-28.	0.2	2
170	Convergent tipâ€toâ€base widening of waterâ€conducting conduits in the tallest bryophytes. American Journal of Botany, 2021, , .	0.8	2
171	Development of nuclear microsatellite markers for the Tasmanian endemic conifer Diselma archeri Hook. F. (Cupressaceae). Conservation Genetics Resources, 2015, 7, 369-372.	0.4	1
172	Unveiling the Complex Structure of Tasmanian Temperate Forests with Model-Based Tandem-X Tomography. , 2018, , .		1
173	Distinct Drimane Chemotypes in Tasmanian Mountain Pepper (<i>Tasmannia lanceolata</i>): Differences in the Profiles of Pungent Leaf Phytochemicals Associated with Altitudinal Cline. Journal of Agricultural and Food Chemistry, 2020, 68, 315-322.	2.4	1
174	Mid Miocene–Last Interglacial Callitris (Cupressaceae) from south-eastern Australia. Review of Palaeobotany and Palynology, 2019, 263, 1-11.	0.8	0
175	The palaeoendemic conifer Pherosphaera hookeriana (Podocarpaceae) exhibits high genetic diversity despite Quaternary range contraction and post glacial bottlenecking. Conservation Genetics, 2021, 22, 307-321.	0.8	0
176	Noâ€analogue associations in the fossil record of southern conifers reveal conservatism in precipitation, but not temperature axes. Global Ecology and Biogeography, 2021, 30, 2455.	2.7	0
177	Using Multi-decadal Satellite Records to Identify Environmental Drivers of Fire Severity Across Vegetation Types. Remote Sensing in Earth Systems Sciences, 0, , .	1.1	О