Noel Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282940/publications.pdf

Version: 2024-02-01

113 papers	1,519 citations	20 h-index	395702 33 g-index
116 all docs	116 docs citations	116 times ranked	1371 citing authors

#	Article	IF	CITATIONS
1	Highly Reliable Quadruple-Node Upset-Tolerant D-Latch. IEEE Access, 2022, 10, 31836-31850.	4.2	9
2	Reconfigurable Electronic Platforms: A Top-Down Approach to Learn about Design and Integration of Electronic Systems. Micromachines, 2022, 13, 442.	2.9	0
3	Energy Harvesting and Energy Storage Systems. Electronics (Switzerland), 2022, 11, 984.	3.1	6
4	In situ synthesis of fluorescent silicon nanodots for determination of total carbohydrates in a paper microfluidic device combined with laser prepared graphene heater. Sensors and Actuators B: Chemical, 2021, 332, 129506.	7.8	18
5	Memcapacitor and Meminductor Circuit Emulators: A Review. Electronics (Switzerland), 2021, 10, 1225.	3.1	22
6	Design and implementation of a floating meminductor emulator upon Riordan gyrator. AEU - International Journal of Electronics and Communications, 2021, 133, 153671.	2.9	10
7	Low-Cost Soft Error Robust Hardened D-Latch for CMOS Technology Circuit. Electronics (Switzerland), 2021, 10, 1256.	3.1	3
8	Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at the Network Edge. Sensors, 2021, 21, 3992.	3.8	15
9	Unveiling the impact of the bias-dependent charge neutrality point on graphene based multi-transistor applications. Nano Express, 2021, 2, 036001.	2.4	4
10	On the Practical Evaluation of the Switching Loss in the Secondary Side Rectifiers of LLC Converters. Energies, 2021, 14, 5915.	3.1	7
11	Advanced Control Methods for Asymmetrical Half-Bridge Flyback. IEEE Transactions on Power Electronics, 2021, 36, 13139-13148.	7.9	7
12	Laser-Fabricated Antennas for RFID Applications. , 2021, , .		6
13	Modulation Scheme for the Bidirectional Operation of the Phase-Shift Full-Bridge Power Converter. IEEE Transactions on Power Electronics, 2020, 35, 1377-1391.	7.9	23
14	Synchronous Rectifiers Drain Voltage Overshoot Reduction in PSFB Converters. IEEE Transactions on Power Electronics, 2020, 35, 7419-7433.	7.9	14
15	Meminductor Emulator Based on a Modified Antoniou's Gyrator Circuit. Electronics (Switzerland), 2020, 9, 1407.	3.1	20
16	Printed and Flexible Microheaters Based on Carbon Nanotubes. Nanomaterials, 2020, 10, 1879.	4.1	8
17	Cost-Effective Printed Electrodes Based on Emerging Materials Applied to Biosignal Acquisition. IEEE Access, 2020, 8, 127789-127800.	4.2	12
18	Combined Floating Offshore Wind and Solar PV. Journal of Marine Science and Engineering, 2020, 8, 576.	2.6	70

#	Article	IF	Citations
19	Temperature sensing by Laser Reduced Graphene Oxide at different Laser Power Levels. , 2020, , .		1
20	Carbon Dots as Sensing Layer for Printed Humidity and Temperature Sensors. Nanomaterials, 2020, 10, 2446.	4.1	10
21	Comparison of Laser-Synthetized Nanographene-Based Electrodes for Flexible Supercapacitors. Micromachines, 2020, 11, 555.	2.9	5
22	Non-Linear Capacitance of Si SJ MOSFETs in Resonant Zero Voltage Switching Applications. IEEE Access, 2020, 8, 116117-116131.	4.2	3
23	Fabrication and Characterization of Humidity Sensors Based on Graphene Oxide–PEDOT:PSS Composites on a Flexible Substrate. Micromachines, 2020, 11, 148.	2.9	34
24	Resistive Switching in Graphene Oxide. Frontiers in Materials, 2020, 7, .	2.4	39
25	Laser-fabricated flexible nanographene-based sensor for pH detection in saliva. , 2020, , .		0
26	Inexpensive Graphene Oxide Heaters Lithographed by Laser. Nanomaterials, 2019, 9, 1184.	4.1	16
27	Assessment of three electrolyte–molecule electrostatic interaction models for 2D material based BioFETs. Nanoscale Advances, 2019, 1, 1077-1085.	4.6	5
28	Laser-Fabricated Reduced Graphene Oxide Memristors. Nanomaterials, 2019, 9, 897.	4.1	52
29	Inexpensive and flexible nanographene-based electrodes for ubiquitous electrocardiogram monitoring. Npj Flexible Electronics, 2019, 3, .	10.7	35
30	Design, fabrication and characterization of capacitive humidity sensors based on emerging flexible technologies. Sensors and Actuators B: Chemical, 2019, 287, 459-467.	7.8	46
31	Memcapacitor emulator based on the Miller effect. International Journal of Circuit Theory and Applications, 2019, 47, 572-579.	2.0	19
32	Acoustic characterization of laser-induced graphene film thermoacoustic loudspeakers. , 2019, , .		4
33	A Practical Approach to the Design of a Highly Efficient PSFB DC-DC Converter for Server Applications. Energies, 2019, 12, 3723.	3.1	13
34	Resistive Switching and Charge Transport in Laser-Fabricated Graphene Oxide Memristors: A Time Series and Quantum Point Contact Modeling Approach. Materials, 2019, 12, 3734.	2.9	11
35	Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon, 2019, 144, 116-126.	10.3	144
36	Design guidelines of laser reduced graphene oxide conformal thermistor for IoT applications. Sensors and Actuators A: Physical, 2018, 274, 148-154.	4.1	35

#	Article	IF	CITATIONS
37	Resonant Hybrid Flyback, a New Topology for High Density Power Adaptors. Electronics (Switzerland), 2018, 7, 363.	3.1	13
38	In-Depth Study of Laser Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates. Nanomaterials, 2018, 8, 517.	4.1	53
39	Reconfigurable electronics: Addressing the uncontrolled increase of waste electrical and electronic equipment. Resources, Conservation and Recycling, 2018, 138, 47-48.	10.8	10
40	Extended Analysis of the Z^{2} -FET: Operation as Capacitorless eDRAM. IEEE Transactions on Electron Devices, 2017, 64, 4486-4491.	3.0	34
41	Insights on the Body Charging and Noise Generation by Impact Ionization in Fully Depleted SOI MOSFETs. IEEE Transactions on Electron Devices, 2017, 64, 5093-5098.	3.0	0
42	Systematic method for electrical characterization of random telegraph noise in MOSFETs. Solid-State Electronics, 2017, 128, 115-120.	1.4	5
43	Identification and Visualization of the Intellectual Structure in Graphene Research. Frontiers in Research Metrics and Analytics, 2017, 2, .	1.9	28
44	Electrical characterization of Random Telegraph Noise in back-biased Ultrathin Silicon-On-Insulator MOSFETs. , 2016, , .		1
45	Electrical characterization and conductivity optimization of laser reduced graphene oxide on insulator using point-contact methods. RSC Advances, 2016, 6, 46231-46237.	3.6	16
46	Electrical characterization of Random Telegraph Noise in Fully-Depleted Silicon-On-Insulator MOSFETs under extended temperature range and back-bias operation. Solid-State Electronics, 2016, 117, 60-65.	1.4	17
47	Direct Characterization of Impact Ionization Current in Silicon-on-Insulator Body-Contacted MOSFETs. ECS Transactions, 2015, 66, 93-99.	0.5	2
48	(Invited) Special Memory Mechanisms in SOI Devices. ECS Transactions, 2015, 66, 201-210.	0.5	0
49	Determination of ad hoc deposited charge on bare SOI wafers. , 2015, , .		5
50	On the effective mobility extraction by point-contact techniques on silicon-on-insulator substrates. Journal of Applied Physics, 2015, 117, 035707.	2.5	8
51	Experimental developments of A2RAM memory cells on SOI and bulk substrates. Solid-State Electronics, 2015, 103, 7-14.	1.4	18
52	A2RAM: Low-power 1T-DRAM memory cells compatible with planar and 3D SOI substrates. , 2014, , .		0
53	In Situ Characterization of Bias Instability in Bare SOI Wafers by Pseudo-MOSFET Technique. IEEE Transactions on Device and Materials Reliability, 2014, 14, 878-883.	2.0	2
54	Tri-Dimensional A2-RAM Cell: Entering the Third Dimension. Engineering Materials, 2014, , 105-124.	0.6	0

#	Article	IF	Citations
55	Bias-Engineered Mobility in Advanced FD-SOI MOSFETs. IEEE Electron Device Letters, 2013, 34, 840-842.	3.9	14
56	A new characterization technique for SOI wafers: Split C(V) in pseudo-MOSFET configuration. Solid-State Electronics, 2013, 90, 127-133.	1.4	15
57	Direct point-contact characterization of Bias instability on bare SOI wafers., 2013,,.		1
58	Effective Capacitance Area for Pseudo-MOSFET Characterization of Bare SOI Wafers by Split-C(V) Measurements. ECS Journal of Solid State Science and Technology, 2013, 2, P529-P533.	1.8	0
59	Determination of Effective Capacitance Area for Pseudo-MOSFET Based Characterization of Bare SOI Wafers by Split-C(V) Measurements. ECS Transactions, 2013, 53, 209-217.	0.5	4
60	Notice of Removal: Fabrication and validation of A2RAM memory cells on SOI and bulk substrates - Withdrawn. , 2013, , .		1
61	Impact of back-gate biasing on effective field and mobility in ultrathin silicon-on-insulator metal-oxide-semiconductor field-effect-transistors. Journal of Applied Physics, 2013, 113, .	2.5	11
62	ADVANCED CONCEPTS FOR FLOATING-BODY MEMORIES. International Journal of High Speed Electronics and Systems, 2012, 21, 1250002.	0.7	0
63	Experimental Demonstration of Capacitorless A2RAM Cells on Silicon-on-Insulator. IEEE Electron Device Letters, 2012, 33, 1717-1719.	3.9	48
64	Multibranch mobility characterization: Evidence of carrier mobility enhancement by back-gate biasing in FD-SOI MOSFET. , 2012 , , .		1
65	Impact of effective capacitance area on the characterization of SOI Wafers by Split-C(V) in Pseudo-MOSFET configuration. , 2012 , , .		2
66	3D Trigate 1T-DRAM Memory Cell for 2x nm Nodes. , 2012, , .		0
67	A 20nm low-power triple-gate multibody 1T-DRAM cell. , 2012, , .		2
68	Innovative capacitorless SOI DRAMs. , 2012, , .		1
69	Combined effect of mechanical stressors and channel orientation on mobility in FDSOI n and p MOSFETs. , 2012, , .		0
70	Experimental demonstration of A2RAM memory cell on SOI., 2012,,.		1
71	Multibranch Mobility Analysis for the Characterization of FDSOI Transistors. IEEE Electron Device Letters, 2012, 33, 1102-1104.	3.9	16
72	Ultrathin n-Channel and p-Channel SOI MOSFETs. Engineering Materials, 2011, , 169-185.	0.6	0

#	Article	IF	Citations
73	New concepts for IT-DRAMs: Overcoming the scaling limits. , 2011, , .		3
74	Properties of 22nm node extremely-thin-SOI MOSFETs., 2011,,.		4
75	Multi-Subband Ensemble Monte Carlo simulation of bulk MOSFETs for the 32nm-node and beyond. Solid-State Electronics, 2011, 65-66, 88-93.	1.4	18
76	Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible With Bulk and SOI Substrates. IEEE Transactions on Electron Devices, 2011, 58, 2371-2377.	3.0	46
77	Capacitor-less A-RAM SOI memory: Principles, scaling and expected performance. Solid-State Electronics, 2011, 59, 44-49.	1.4	11
78	Three-interface pseudo-MOSFET models for the characterization of SOI wafers with ultrathin film and BOX. Microelectronic Engineering, 2011, 88, 1236-1239.	2.4	9
79	Self-heating effects in ultrathin FD SOI transistors. , 2011, , .		12
80	New Capacitorless Dynamic Memory Compatible with SOI and Bulk CMOS. ECS Transactions, 2011, 35, 195-200.	0.5	0
81	Hole transport in DGSOI devices: Orientation and silicon thickness effects. Solid-State Electronics, 2010, 54, 191-195.	1.4	18
82	Why the Universal Mobility Is Not. IEEE Transactions on Electron Devices, 2010, 57, 1327-1333.	3.0	33
83	An Analytical \$I\$– \$V\$ Model for Surrounding-Gate Transistors That Includes Quantum and Velocity Overshoot Effects. IEEE Transactions on Electron Devices, 2010, 57, 2925-2933.	3.0	30
84	A-RAM Memory Cell: Concept and Operation. IEEE Electron Device Letters, 2010, 31, 972-974.	3.9	42
85	Origins of universal mobility violation in SOI MOSFETs. , 2010, , .		1
86	An undergraduate microwave and RF low-profile laboratory. , 2010, , .		0
87	Multi-Subband Monte Carlo simulation of bulk MOSFETs for the 32nm-node and beyond., 2010,,.		0
88	Hole Mobility in Ultrathin Double-Gate SOI Devices: The Effect of Acoustic Phonon Confinement. IEEE Electron Device Letters, 2009, 30, 1338-1340.	3.9	20
89	The effect of surface roughness scattering on hole mobility in double gate silicon-on-insulator devices. Journal of Applied Physics, 2009, 106, 023705.	2.5	7
90	Simulation of Hole Mobility in DGSOI Transistors. ECS Transactions, 2009, 19, 235-240.	0.5	0

#	Article	IF	CITATIONS
91	Ultrathin Body Effects in Multiple Gate SOI Transistors. ECS Transactions, 2009, 25, 91-98.	0.5	О
92	Characterization, modelling and simulation of Sub-45nm SOI devices. , 2009, , .		0
93	Simulation of hole mobility in two-dimensional systems. Semiconductor Science and Technology, 2009, 24, 035016.	2.0	20
94	Revisited Pseudo-MOSFET Models for the Characterization of Ultrathin SOI Wafers. IEEE Transactions on Electron Devices, 2009, 56, 1507-1515.	3.0	36
95	Monte Carlo simulation of nanoelectronic devices. Journal of Computational Electronics, 2009, 8, 174-191.	2.5	6
96	Non-metallic effects in silicided gate MOSFETs. Solid-State Electronics, 2009, 53, 1313-1317.	1.4	0
97	A-RAM: Novel capacitor-less DRAM memory. , 2009, , .		4
98	Quantization effects in silicided and metal gate MOSFETs., 2009,,.		0
99	Monte Carlo simulation of low-field mobility in strained double gate SOI transistors. Journal of Computational Electronics, 2008, 7, 205-208.	2.5	2
100	A revisited pseudo-MOSFET model for ultrathin SOI films. , 2008, , .		1
101	Enhanced electron transport by carrier overshoot in ultrascaled Double Gate MOSFETs., 2008, , .		0
102	Fully self-consistent k · p solver and Monte Carlo simulator for hole inversion layers. , 2008, , .		3
103	The Quantization Impact of Accumulated Carriers in Silicide-Gated MOSFETs. IEEE Electron Device Letters, 2008, 29, 628-631.	3.9	4
104	Evidence for mobility enhancement in double-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 2007, 102, 083712.	2.5	23
105	An electron mobility model for ultra-thin gate-oxide MOSFETs including the contribution of remote scattering mechanisms. Semiconductor Science and Technology, 2007, 22, 348-353.	2.0	8
106	Anisotropy of electron mobility in arbitrarily oriented FinFETs., 2007,,.		10
107	Geometric Magnetoresistance and Mobility Behavior in Single-Gate and Double-Gate SOI Devices. SOI Conference, Proceedings of the IEEE International, 2007, , .	0.0	1
108	Mobility issues in double-gate SOI MOSFETs: Characterization and analysis. , 2007, , .		4

#	Article	IF	CITATIONS
109	Phonon scattering in Si-based nanodevices. Solid-State Electronics, 2007, 51, 593-597.	1.4	6
110	Modeling of Inversion Layer Centroid and Polysilicon Depletion Effects on Ultrathin-Gate-Oxide MOSFET Behavior: The Influence of Crystallographic Orientation. IEEE Transactions on Electron Devices, 2007, 54, 723-732.	3.0	21
111	Influence of acoustic phonon confinement on electron mobility in ultrathin silicon on insulator layers. Applied Physics Letters, 2006, 88, 122108.	3.3	36
112	Characterization of electron transport at high fields in silicon-on-insulator devices: a Monte Carlo study. Semiconductor Science and Technology, 2006, 21, 81-86.	2.0	0
113	Voltammetric determination of Imatinib (Gleevec) and its main metabolite using square-wave and adsorptive stripping square-wave techniques in urine samples. Talanta, 2005, 66, 202-209.	5.5	24