
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 16714-16724.	6.6	1,000
2	Doubleâ€Layered NiO Photocathodes for pâ€Type DSSCs with Record IPCE. Advanced Materials, 2010, 22, 1759-1762.	11.1	303
3	Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 2012, 256, 2414-2423.	9.5	265
4	A pâ€Type NiOâ€Based Dyeâ€Sensitized Solar Cell with an Openâ€Circuit Voltage of 0.35â€V. Angewandte Ch International Edition, 2009, 48, 4402-4405.	emie - 7.2	257
5	Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50, 12450-12550.	18.7	240
6	Synthesis and Mechanistic Studies of Organic Chromophores with Different Energy Levels for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 4738-4748.	1.5	174
7	Synthesis, photophysical and photovoltaic investigations of acceptor-functionalized perylene monoimide dyes for nickel oxide p-type dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2075.	15.6	142
8	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	1.3	135
9	Dye-sensitized photocathodes for H ₂ evolution. Chemical Society Reviews, 2017, 46, 6194-6209.	18.7	118
10	Cobalt Polypyridyl-Based Electrolytes for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 9772-9779.	1.5	115
11	Dye Regeneration by Spiro-MeOTAD in Solid State Dye-Sensitized Solar Cells Studied by Photoinduced Absorption Spectroscopy and Spectroelectrochemistry. Journal of Physical Chemistry C, 2009, 113, 6275-6281.	1.5	103
12	Photomodulated Voltammetry of Iodide/Triiodide Redox Electrolytes and Its Relevance to Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 3016-3020.	2.1	95
13	Role of the Triiodide/Iodide Redox Couple in Dye Regeneration in p-Type Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 6485-6493.	1.6	92
14	Increased photocurrent in a tandem dye-sensitized solar cell by modifications in push–pull dye-design. Chemical Communications, 2015, 51, 3915-3918.	2.2	87
15	The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 2015, 304-305, 179-201.	9.5	86
16	Promoting charge-separation in p-type dye-sensitized solar cells using bodipy. Chemical Communications, 2014, 50, 5258-5260.	2.2	77
17	CO2 photoreduction with long-wavelength light: dyads and monomers of zinc porphyrin and rhenium bipyridine. Chemical Communications, 2012, 48, 8189.	2.2	75
18	Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering. Physical Chemistry Chemical Physics, 2013, 15, 2411.	1.3	71

#	Article	IF	CITATIONS
19	Chemical and Physical Reduction of High Valence Ni States in Mesoporous NiO Film for Solar Cell Application. ACS Applied Materials & Interfaces, 2017, 9, 33470-33477.	4.0	58
20	Fabrication of Efficient NiO Photocathodes Prepared via RDS with Novel Routes of Substrate Processing for <i>p</i> ‶ype Dye‧ensitized Solar Cells. ChemElectroChem, 2014, 1, 384-391.	1.7	51
21	Red-Absorbing Cationic Acceptor Dyes for Photocathodes in Tandem Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16536-16546.	1.5	51
22	The ferrocene effect: enhanced electrocatalytic hydrogen production using meso-tetraferrocenyl porphyrin palladium(<scp>ii</scp>) and copper(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 14646-14655.	1.6	51
23	Synthesis, characterisation and theoretical study of ruthenium 4,4′-bi-1,2,3-triazolyl complexes: fundamental switching of the nature of S1 and T1 states from MLCT to MC. Dalton Transactions, 2012, 41, 7637.	1.6	47
24	Developing photocathode materials for p-type dye-sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 10409-10445.	2.7	47
25	Synthesis and properties of a meso- tris–ferrocene appended zinc(ii) porphyrin and a critical evaluation of its dye sensitised solar cell (DSSC) performance. RSC Advances, 2014, 4, 22733-22742.	1.7	45
26	Design and characterisation of bodipy sensitizers for dye-sensitized NiO solar cells. Physical Chemistry Chemical Physics, 2016, 18, 1059-1070.	1.3	45
27	Rapid photoinduced charge injection into covalent polyoxometalate–bodipy conjugates. Chemical Science, 2018, 9, 5578-5584.	3.7	43
28	Luminescent biscyclometalated arylpyridine iridium(iii) complexes with 4,4′-bi-1,2,3-triazolyl ancillary ligands. Dalton Transactions, 2013, 42, 13527.	1.6	41
29	Novel triphenylamine-modified ruthenium(ii) terpyridine complexes for nickel oxide-based cathodic dye-sensitized solar cells. RSC Advances, 2014, 4, 5782.	1.7	37
30	Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 24556-24565.	4.0	34
31	Hybrid Cyclometalated Iridium Coumarin Complex as a Sensitiser of Both n―and pâ€Type DSSCs. European Journal of Inorganic Chemistry, 2016, 2016, 2887-2890.	1.0	31
32	Photoelectrocatalytic H ₂ evolution from integrated photocatalysts adsorbed on NiO. Chemical Science, 2019, 10, 99-112.	3.7	31
33	New cyclometalated iridium(III) dye chromophore complexes for p-type dye-sensitised solar cells. Dyes and Pigments, 2017, 140, 269-277.	2.0	30
34	Photosensitizers for H ₂ Evolution Based on Charged or Neutral Zn and Sn Porphyrins. Inorganic Chemistry, 2020, 59, 1611-1621.	1.9	27
35	Can aliphatic anchoring groups be utilised with dyes for p-type dye sensitized solar cells?. Dalton Transactions, 2016, 45, 7708-7719.	1.6	24
36	Investigating interfacial electron transfer in dye-sensitized NiO using vibrational spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 7877-7885.	1.3	23

#	Article	IF	CITATIONS
37	Increasing p-type dye sensitised solar cell photovoltages using polyoxometalates. Physical Chemistry Chemical Physics, 2017, 19, 18831-18835.	1.3	19
38	Tuning Photoinduced Electron Transfer in POMâ€Bodipy Hybrids by Controlling the Environment: Experiment and Theory. Angewandte Chemie - International Edition, 2021, 60, 6518-6525.	7.2	19
39	Pyridinium p-DSSC dyes: An old acceptor learns new tricks. Dyes and Pigments, 2019, 165, 508-517.	2.0	18
40	Investigation of a new bis(carboxylate)triazole-based anchoring ligand for dye solar cell chromophore complexes. Dalton Transactions, 2017, 46, 1520-1530.	1.6	17
41	Probing the dye–semiconductor interface in dye-sensitized NiO solar cells. Journal of Chemical Physics, 2020, 153, 184704.	1.2	16
42	Reduced Graphene Oxide-NiO Photocathodes for p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 7345-7353.	2.5	15
43	Does Iodine or Thiocyanate Play a Role in pâ€Type Dyeâ€Sensitized Solar Cells?. ChemElectroChem, 2016, 3, 1827-1836.	1.7	14
44	A panchromatic, near infrared Ir(III) emitter bearing a tripodal C^N^C ligand as a dye for dye-sensitized solar cells. Polyhedron, 2018, 140, 109-115.	1.0	14
45	Characterisation of redox states of metal–organic frameworks by growth on modified thin-film electrodes. Chemical Science, 2018, 9, 6572-6579.	3.7	13
46	Bay Annulated Indigo as a New Chromophore for pâ€ŧype Dye‣ensitized Solar Cells. ChemPhotoChem, 2018, 2, 498-506.	1.5	12
47	New cyclometalated iridium(III) dye chromophore complexes for n-type dye-sensitised solar cells. Inorganica Chimica Acta, 2017, 457, 81-89.	1.2	11
48	A dual-function photoelectrochemical solar cell which assimilates light-harvesting, charge-transport and photoelectrochromic nanomaterials in a tandem design. Sustainable Energy and Fuels, 2019, 3, 514-528.	2.5	10
49	Self-switching photoelectrochromic device with low cost, plasmonic and conducting Ag nanowires decorated V2O5 and PbS quantum dots. Solar Energy Materials and Solar Cells, 2022, 239, 111674.	3.0	10
50	Design and synthesis of water soluble (metallo)porphyrins with pendant arms: studies of binding to xanthine oxidase. New Journal of Chemistry, 2010, 34, 1125.	1.4	9
51	Carbon counter electrodes efficient catalysts for the reduction of Co(III) in cobalt mediated dye-sensitized solar cells. Polyhedron, 2014, 82, 154-157.	1.0	9
52	Charge-transfer dynamics at the dye–semiconductor interface of photocathodes for solar energy applications. Faraday Discussions, 2017, 198, 449-461.	1.6	9
53	Acid-triggering of light-induced charge-separation in hybrid organic/inorganic molecular photoactive dyads for harnessing solar energy. Inorganic Chemistry Frontiers, 2021, 8, 1610-1618.	3.0	9
54	A titanic breakthrough. Nature Catalysis, 2021, 4, 740-741.	16.1	7

4

#	Article	IF	CITATIONS
55	Pyridyl anchored indolium dyes for the p-type dye sensitized solar cell. Dyes and Pigments, 2022, 202, 110244.	2.0	7
56	Ruthenium Assemblies for CO2 Reduction and H2 Generation: Time Resolved Infrared Spectroscopy, Spectroelectrochemistry and a Photocatalysis Study in Solution and on NiO. Frontiers in Chemistry, 2021, 9, 795877.	1.8	7
57	Molecular catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 353-395.	1.6	6
58	Resonance Raman Study of New Pyrroleâ€Anchoring Dyes for NiO‣ensitized Solar Cells. ChemPhysChem, 2017, 18, 406-414.	1.0	6
59	A Time-Resolved Spectroscopic Investigation of a Novel BODIPY Copolymer and Its Potential Use as a Photosensitiser for Hydrogen Evolution. Frontiers in Chemistry, 2020, 8, 584060.	1.8	5
60	Assembly, charge-transfer and solar cell performance with porphyrin-C ₆₀ on NiO for p-type dye-sensitized solar cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180338.	1.6	4
61	Tuning Photoinduced Electron Transfer in POMâ€Bodipy Hybrids by Controlling the Environment: Experiment and Theory. Angewandte Chemie, 2021, 133, 6592-6599.	1.6	4
62	Efficient charge separation and transport in a tandem solar cell with photoconducting Se sub-microtubes and AgBiS2 quantum dots. Chemical Engineering Journal, 2022, 437, 135223.	6.6	4
63	Natural and artificial photosynthesis: general discussion. Faraday Discussions, 2015, 185, 187-217.	1.6	3
64	Mesoporous Dye-Sensitized Solar Cells. , 2012, , 481-496.		2
65	Dye-Sensitized Photoelectrochemical Cells. , 2013, , 385-441.		2
66	Self-organization of photo-active nanostructures: general discussion. Faraday Discussions, 2015, 185, 529-548.	1.6	2
67	Inorganic assembly catalysts for artificial photosynthesis: general discussion. Faraday Discussions, 2017, 198, 481-507.	1.6	2
68	A soft x-ray probe of a titania photoelectrode sensitized with a triphenylamine dye. Journal of Chemical Physics, 2021, 154, 234707.	1.2	2
69	Photoelectrochemical Hydrogen Evolution Using Dye-Sensitised Nickel Oxide. Johnson Matthey Technology Review, 2022, 66, 21-31.	0.5	1
70	Neutral Lipophilic Palladium(II) Complexes and their Applications in Electrocatalytic Hydrogen Production and C Coupling Reactions. European Journal of Inorganic Chemistry, 2020, 2020, 813-822.	1.0	1
71	(Invited) Dye-Sensitized Metal Oxides for Artificial Photosynthesis. ECS Meeting Abstracts, 2019, , .	0.0	О