
Junbo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization. International Journal of Molecular Sciences, 2015, 16, 9804-9830.	4.1	125
2	Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. Biosensors and Bioelectronics, 2018, 111, 138-143.	10.1	74
3	A MEMS Based Electrochemical Vibration Sensor for Seismic Motion Monitoring. Journal of Microelectromechanical Systems, 2014, 23, 92-99.	2.5	57
4	A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension. Biosensors and Bioelectronics, 2013, 43, 304-307.	10.1	55
5	A microfluidic system for cell type classification based on cellular size-independent electrical properties. Lab on A Chip, 2013, 13, 2272.	6.0	53
6	A microfluidic flow cytometer enabling absolute quantification of single-cell intracellular proteins. Lab on A Chip, 2017, 17, 3129-3137.	6.0	41
7	A Resonant Pressure Microsensor Capable of Self-Temperature Compensation. Sensors, 2015, 15, 10048-10058.	3.8	37
8	Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells. Scientific Data, 2017, 4, 170015.	5.3	37
9	A micro electrochemical seismic sensor based on MEMS technologies. Sensors and Actuators A: Physical, 2013, 202, 85-89.	4.1	28
10	A low-sample-loss microfluidic system for the quantification of size-independent cellular electrical property—lts demonstration for the identification and characterization of circulating tumour cells (CTCs). Sensors and Actuators B: Chemical, 2017, 246, 29-37.	7.8	28
11	Advances of Single-Cell Protein Analysis. Cells, 2020, 9, 1271.	4.1	27
12	Microelectromechanical Systems-Based Electrochemical Seismic Sensors With Insulating Spacers Integrated Electrodes for Planetary Exploration. IEEE Sensors Journal, 2016, 16, 650-653.	4.7	26
13	Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization. Sensors, 2016, 16, 232.	3.8	22
14	A Micromachined Resonant Differential Pressure Sensor. IEEE Transactions on Electron Devices, 2020, 67, 640-645.	3.0	21
15	Development of microfluidic platform to high-throughput quantify single-cell intrinsic bioelectrical markers of tumor cell lines, subtypes and patient tumor cells. Sensors and Actuators B: Chemical, 2020, 317, 128231.	7.8	20
16	A High-Sensitivity Resonant Differential Pressure Microsensor Based on Bulk Micromachining. IEEE Sensors Journal, 2021, 21, 8927-8934.	4.7	19
17	Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. Analyst, The, 2019, 144, 1008-1015.	3.5	17
18	A MEMS-Based Electrochemical Angular Accelerometer With Integrated Plane Electrodes for Seismic Motion Monitoring. IEEE Sensors Journal, 2020, 20, 10469-10475.	4.7	17

JUNBO WANG

#	Article	IF	CITATIONS
19	Development of microfluidic platform capable of high-throughput absolute quantification of single-cell multiple intracellular proteins from tumor cell lines and patient tumor samples. Biosensors and Bioelectronics, 2020, 155, 112097.	10.1	17
20	A MEMS based Seismic Sensor using the Electrochemical Approach. Procedia Engineering, 2012, 47, 362-365.	1.2	14
21	Membrane capacitance of thousands of single white blood cells. Journal of the Royal Society Interface, 2017, 14, 20170717.	3.4	14
22	An Electrochemical, Low-Frequency Seismic Micro-Sensor Based on MEMS with a Force-Balanced Feedback System. Sensors, 2017, 17, 2103.	3.8	14
23	A Microfluidic Fluorescent Flow Cytometry Capable of Quantifying Cell Sizes and Numbers of Specific Cytosolic Proteins. Scientific Reports, 2018, 8, 14229.	3.3	14
24	A MEMS-Based Electrochemical Angular Accelerometer With a Force-Balanced Negative Feedback. IEEE Sensors Journal, 2021, 21, 15972-15978.	4.7	12
25	Microfluidic Cytometry for Highâ€Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 630-637.	1.5	11
26	The Electrochemical Seismometer Based on Fine-Tune Sensing Electrodes for Undersea Exploration. IEEE Sensors Journal, 2020, 20, 8194-8202.	4.7	10
27	A droplet-based microfluidic flow cytometry enabling absolute quantification of single-cell proteins leveraging constriction channel. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	10
28	Wireless Passive Intracranial Pressure Sensor Based on Vacuum Packaging. IEEE Sensors Journal, 2020, 20, 11247-11255.	4.7	9
29	A High-Consistency Broadband MEMS-Based Electrochemical Seismometer With Integrated Planar Microelectrodes. IEEE Transactions on Electron Devices, 2017, 64, 3829-3835.	3.0	8
30	A Micromachined Resonant Low-Pressure Sensor With High Quality Factor. IEEE Sensors Journal, 2021, 21, 19840-19846.	4.7	8
31	Microelectromechanical System-Based Electrochemical Seismometers with Two Pairs of Electrodes Integrated on One Chip. Sensors, 2019, 19, 3953.	3.8	7
32	An Electrochemical Angular Micro-Accelerometer Based on Miniaturized Planar Electrodes Positioned in Parallel. IEEE Sensors Journal, 2021, 21, 21305-21313.	4.7	7
33	A microfabricated 96â€well woundâ€healing assay. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 1192-1199.	1.5	6
34	Development of microfluidic platform capable of characterizing cytoplasmic viscosity, cytoplasmic conductivity and specific membrane capacitance of single cells. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	6
35	A Resonant Differential Pressure Microsensor With Temperature and Static Pressure Compensations. IEEE Sensors Journal, 2021, 21, 19881-19888.	4.7	6
36	The MEMS-Based Electrochemical Seismic Sensor With Integrated Sensitive Electrodes by Adopting Anodic Bonding Technology. IEEE Sensors Journal, 2021, 21, 19833-19839.	4.7	6

JUNBO WANG

#	Article	IF	CITATIONS
37	Advance of microfluidic constriction channel system of measuring <scp>singleâ€cell</scp> cortical tension/specific capacitance of membrane and conductivity of cytoplasm. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 434-447.	1.5	6
38	A Resonant Differential Pressure Microsensor With Stress Isolation and Au-Au Bonding in Packaging. IEEE Transactions on Electron Devices, 2022, 69, 2023-2029.	3.0	6
39	Absolute Copy Numbers of β-Actin Proteins Collected from 10,000 Single Cells. Micromachines, 2018, 9, 254.	2.9	5
40	The Design and Fabrication of the High Integrated Sensitive Electrodes by Adopting the Anodic Bonding Technology for the Electrochemical Seismic Sensors. , 2021, , .		5
41	A Micromachined Resonant Micro-Pressure Sensor. IEEE Sensors Journal, 2021, 21, 19789-19796.	4.7	5
42	Development of droplet microfluidics capable of quantitative estimation of single-cell multiplex proteins. Journal of Micromechanics and Microengineering, 2022, 32, 024002.	2.6	5
43	Quantification of Single-Cell Cortical Tension Using Multiple Constriction Channels. IEEE Sensors Journal, 2021, 21, 7260-7267.	4.7	4
44	Temperature Compensation of the MEMS-Based Electrochemical Seismic Sensors. Micromachines, 2021, 12, 387.	2.9	4
45	A MEMS based electrochemical seismometer with a novel integrated sensing unit. , 2016, , .		3
46	Optimization of LC sensor enabling wireless passive intracranial pressure monitoring. Microsystem Technologies, 2019, 25, 3437-3446.	2.0	3
47	The Electrochemical Seismometer Based on a Novel Designed Sensing Electrode for Undersea Exploration. , 2019, , .		3
48	MEMS-Based Integrated Triaxial Electrochemical Seismometer. Micromachines, 2021, 12, 1156.	2.9	3
49	A Resonant High-Pressure Sensor Based on Integrated Resonator-Diaphragm Structure. IEEE Sensors Journal, 2022, 22, 3920-3927.	4.7	3
50	A Bulk-Micromachined Resonant Differential Pressure Microsensor Insensitive to Temperature and Static Pressure. , 2022, , .		3
51	A Low-Temperature-Sensitivity Resonant Pressure Microsensor Based on Eutectic Bonding. IEEE Sensors Journal, 2022, 22, 9321-9328.	4.7	3
52	Development of Microfluidic System Enabling High-Throughput Characterization of Multiple Biophysical Parameters of Single Cells. IEEE Transactions on Electron Devices, 2022, 69, 2015-2022.	3.0	3
53	An Electrostatic Comb Excitation Resonant Pressure Sensor for High Pressure Applications. IEEE Sensors Journal, 2022, 22, 15759-15768.	4.7	3
54	Microfluidic Analyzer Enabling Quantitative Measurements of Specific Intracellular Proteins at the Single-Cell Level. Micromachines, 2018, 9, 588.	2.9	2

JUNBO WANG

#	Article	IF	CITATIONS
55	A novel microfluidic flow-cytometry for counting numbers of single-cell β-actins. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2020, 3, 156-161.	3.2	2
56	A Micromachined Electrochemical Angular Accelerometer Based on Interdigital Electrodes. , 2021, , .		2
57	A MEMS Electrochemical Angular Accelerometer Leveraging Silicon-Based Three-Electrode Structure. Micromachines, 2022, 13, 186.	2.9	2
58	Microfluidic Quantitative Flow Cytometer With Light Modulation. IEEE Sensors Journal, 2022, 22, 3009-3016.	4.7	2
59	A Resonant Low-Pressure Microsensor With Low Temperature Disturbance. IEEE Sensors Journal, 2022, 22, 10404-10410.	4.7	2
60	A new electrochemical angular microaccelerometer with integrated sensitive electrodes perpendicular to flow channels. Microsystems and Nanoengineering, 2022, 8, .	7.0	2
61	Reduction of Temperature Sensitivity for Resonant Micro-Pressure Sensor Using Glass-Silicon Coupling Wafer Packaging. IEEE Sensors Journal, 2022, 22, 6410-6417.	4.7	1
62	A Microfluidic Platform for Characterizing Single-Cell Intrinsic Bioelectrical Properties With Large Sample Size. IEEE Transactions on Electron Devices, 2022, 69, 5177-5184.	3.0	1
63	A MEMS-Based Co-Oscillating Electrochemical Vector Hydrophone. Micromachines, 2022, 13, 143.	2.9	0
64	A Mems Based Electrochemical Angular Accelerometer with a High-Integrated Sensing Unit. , 2022, , .		0
65	A MEMS Electrochemical Seismometer Based on the Integrated Structure of Centrosymmetric Four Electrodes Micromachines 2022 13 354	2.9	0