Harekrushna Behera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroelastic analysis of gravity wave interaction with submerged horizontal flexible porous plate. Journal of Fluids and Structures, 2015, 54, 643-660.	3.4	71
2	Oblique Wave Trapping by Porous Structures Near a Wall. Journal of Engineering Mechanics - ASCE, 2015, 141, .	2.9	68
3	Gravity wave interaction with porous structures in two-layer fluid. Journal of Engineering Mathematics, 2014, 87, 73-97.	1.2	55
4	Wave transmission by partial porous structures in two-layer fluid. Engineering Analysis With Boundary Elements, 2015, 58, 58-78.	3.7	43
5	Oblique wave trapping by porous and flexible structures in a two-layer fluid. Physics of Fluids, 2013, 25, .	4.0	39
6	Anion-Selective Cholesterol Decorated Macrocyclic Transmembrane Ion Carriers. Journal of the American Chemical Society, 2017, 139, 12919-12922.	13.7	39
7	Wave trapping by porous barrier in the presence of step type bottom. Wave Motion, 2015, 57, 219-230.	2.0	35
8	Oblique wave scattering by a floating elastic plate over a porous bed in single and two-layer fluid systems. Ocean Engineering, 2018, 159, 280-294.	4.3	33
9	Effect of Bragg scattering due to bottom undulation on a floating dock. Wave Motion, 2019, 90, 121-138.	2.0	30
10	Interaction between oblique waves and multiple bottom-standing flexible porous barriers near a rigid wall. Meccanica, 2018, 53, 871-885.	2.0	27
11	Surface wave scattering by multiple flexible fishing cage system. Physics of Fluids, 2021, 33, .	4.0	27
12	Numerical modeling for wave attenuation in double trapezoidal porous structures. Ocean Engineering, 2019, 184, 91-106.	4.3	22
13	Effect of a floating permeable plate on the hydroelastic response of a very large floating structure. Journal of Engineering Mathematics, 2019, 116, 49-72.	1.2	20
14	Wave Attenuation by Multiple Outer Porous Barriers in the Presence of an Inner Rigid Cylinder. Journal of Waterway, Port, Coastal and Ocean Engineering, 2020, 146, .	1.2	20
15	Wave energy dissipation by a floating circular flexible porous membrane in single and two-layer fluids. Ocean Engineering, 2020, 206, 107374.	4.3	20
16	Wave Scattering by a Partial Flexible Porous Barrier in the Presence of a Step-Type Bottom Topography. Coastal Engineering Journal, 2016, 58, 1650008-1-1650008-26.	1.9	19
17	Oblique wave interaction with porous, flexible barriers in a two-layer fluid. Journal of Engineering Mathematics, 2016, 100, 1-31.	1.2	17
18	Analysis of Wave Action Through Multiple Submerged Porous Structures. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	1.2	16

HAREKRUSHNA BEHERA

#	Article	IF	CITATIONS
19	Impact of sloping porous seabed on the efficiency of an OWC against oblique waves. Renewable Energy, 2021, 173, 1027-1039.	8.9	16
20	Reduction of hydroelastic response of a flexible floating structure by an annular flexible permeable membrane. Journal of Engineering Mathematics, 2019, 118, 73-99.	1.2	15
21	Triamide macrocyclic chloride receptors via a one-pot tandem reduction–condensation–cyclization reaction. Organic and Biomolecular Chemistry, 2017, 15, 4937-4940.	2.8	13
22	Flexural gravity wave motion over poroelastic bed. Wave Motion, 2016, 63, 135-148.	2.0	12
23	Effect of a Submerged Porous Plate on the Hydroelastic Response of a Very Large Floating Structure. Journal of Marine Science and Application, 2018, 17, 564-577.	1.7	12
24	Oblique Wave Scattering by a Floating Bridge in the Presence of a Vertical Permeable Flexible Barrier. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	1.2	11
25	Effect of imposed shear on the dynamics of a contaminated two-layer film flow down a slippery incline. Physics of Fluids, 2020, 32, .	4.0	9
26	Scattering of obliquely incident water waves by a surface-piercing porous box. Ocean Engineering, 2019, 193, 106577.	4.3	8
27	Poiseuille–Rayleigh–Bénard instability of a channel flow with uniform cross-flow and thermal slip. Physics of Fluids, 2021, 33, .	4.0	8
28	Hydroelastic response of a floating plate on the falling film: A stability analysis. Wave Motion, 2021, 104, 102749.	2.0	8
29	COVID-19 Vaccination Effect on Stock Market and Death Rate in India. Asia-Pacific Financial Markets, 2022, 29, 651-673.	2.4	8
30	Boundary element method for wave trapping by a multi-layered trapezoidal breakwater near a sloping rigid wall. Meccanica, 2021, 56, 317-334.	2.0	7
31	Analysis of transmission spectra in one-dimensional ternary photonic crystals with complex unit cell. Optik, 2022, 261, 169169.	2.9	7
32	Attenuation of wave force on a floating dock by multiple porous breakwaters. Engineering Analysis With Boundary Elements, 2022, 143, 170-189.	3.7	7
33	Wave propagation through mangrove forests in the presence of a viscoelastic bed. Wave Motion, 2018, 78, 162-175.	2.0	6
34	Oblique Wave Trapping by a Surface-Piercing Flexible Porous Barrier in the Presence of Step-Type Bottoms. Journal of Marine Science and Application, 2019, 18, 433-443.	1.7	6
35	Scattering of Water Waves by Very Large Floating Structure in the Presence of a Porous Box. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144, .	1.2	6
36	Tunable properties of one-dimensional GaAs/AlAs-based photonic crystal containing two defect layers. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2141.	2.1	5

HAREKRUSHNA BEHERA

#	Article	IF	CITATIONS
37	Wave attenuation properties of rubble mound breakwater in tandem with a floating dock against oblique regular waves. Waves in Random and Complex Media, 0, , 1-19.	2.7	5
38	Instability mechanism for miscible twoâ€fluid channel flow with wall slip. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 1947-1958.	1.6	4
39	Oblique wave scattering by double porous structures. Journal of Physics: Conference Series, 2018, 1000, 012168.	0.4	2
40	Low Molecular Weight Di―to Tetrapeptide Transmembrane Cation Transporters. European Journal of Organic Chemistry, 2020, 2020, 6898-6902.	2.4	2
41	Oblique Wave Scattering by a System of Semi-Infinite Floating and Submerged Elastic Plates. Differential Equations and Dynamical Systems, 2021, 29, 157-173.	1.0	2
42	Mitigation of wave force on a circular flexible plate by a surface-piercing flexible porous barrier. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2021, 235, 586-599.	0.5	2
43	Macrocycle-Based Synthetic Ion Channels. , 2020, , 1519-1554.		2
44	Wave attenuation by a submerged flexible permeable membrane. AIP Conference Proceedings, 2020, , .	0.4	2
45	Wave trapping by a submerged permeable flexible membrane near an impermeable sea wall. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, 1.	1.4	2
46	Surface wave scattering by porous and flexible barrier over a permeable bed. AIP Conference Proceedings, 2019, , .	0.4	1
47	Effect of porous bottom on flexural gravity wave. AIP Conference Proceedings, 2020, , .	0.4	1
48	Wave attenuation by a submerged circular porous membrane. Journal of Ocean Engineering and Science, 2022, , .	4.3	1
49	Long wave instability on the parallel shear flows in the presence of insoluble surfactant. AIP Conference Proceedings, 2020, , .	0.4	0
50	Effect of a floating elastic membrane for stabilizing the film flow down a porous inclined plane. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e201900246.	1.6	0
51	Macrocycle-Based Synthetic Ion Channels. , 2019, , 1-36.		0
52	Wave Interaction with a Floating Circular Porous Elastic Plate. Springer Proceedings in Mathematics and Statistics, 2020, , 85-95.	0.2	0
53	Stability Analysis of a Film Flow Down an Incline in the Presence of a Floating Flexible Membrane. Springer Proceedings in Mathematics and Statistics, 2020, , 253-263.	0.2	0