
Hubert Mutin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282449/publications.pdf Version: 2024-02-01

HUREDT MUTIN

#	Article	IF	CITATIONS
1	Hybrid materials from organophosphorus coupling molecules. Journal of Materials Chemistry, 2005, 15, 3761.	6.7	378
2	Nonhydrolytic Processing of Oxide-Based Materials: Simple Routes to Control Homogeneity, Morphology, and Nanostructure. Chemistry of Materials, 2009, 21, 582-596.	6.7	237
3	Bonding-induced thermal conductance enhancement at inorganic heterointerfaces usingÂnanomolecular monolayers. Nature Materials, 2013, 12, 118-122.	27.5	223
4	Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials. Dalton Transactions, 2013, 42, 12569.	3.3	195
5	Non-hydrolytic sol–gel routes to heterogeneous catalysts. Chemical Society Reviews, 2012, 41, 3624.	38.1	162
6	Mixed oxides SiO2–ZrO2and SiO2–TiO2by a non-hydrolytic sol–gel route. Journal of Materials Chemistry, 1996, 6, 1665-1671.	6.7	161
7	Structural Characterization of Sol-Gel Derived Oxycarbide Glasses. 1. Study of the Pyrolysis Process. Chemistry of Materials, 1994, 6, 796-802.	6.7	156
8	A Solution Chemistry Study of Nonhydrolytic Solâ^'Gel Routes to Titania. Chemistry of Materials, 1997, 9, 694-698.	6.7	150
9	Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: A review. Applied Catalysis A: General, 2013, 451, 192-206.	4.3	145
10	Ionic liquid as plasticizer for europium(iii)-doped luminescent poly(methyl methacrylate) films. Physical Chemistry Chemical Physics, 2010, 12, 1879-1885.	2.8	143
11	High-Field ¹⁷ 0 MAS NMR Investigation of Phosphonic Acid Monolayers on Titania. Chemistry of Materials, 2008, 20, 5191-5196.	6.7	130
12	Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol–gel methods. Journal of Materials Chemistry, 1996, 6, 1925-1932.	6.7	121
13	Hybrid Organic-Inorganic Materials Based on Organophosphorus Derivatives. Topics in Current Chemistry, 0, , 145-174.	4.0	120
14	Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. Comptes Rendus Chimie, 2003, 6, 1153-1164.	0.5	115
15	Title is missing!. Journal of Sol-Gel Science and Technology, 1999, 14, 27-38.	2.4	106
16	Selective Surface Modification of SiO2â^'TiO2Supports with Phosphonic Acids. Chemistry of Materials, 2004, 16, 5670-5675.	6.7	99
17	Mechanism of pyrolysis of polycarbosilanes: poly(silylethylene) and poly(dimethylsilylethylene). Organometallics, 1993, 12, 454-462.	2.3	98
18	Organically modified aluminas by grafting and sol–gel processes involving phosphonate derivatives. Journal of Materials Chemistry, 2001, 11, 3161-3165.	6.7	93

#	Article	IF	CITATIONS
19	Mechanism of the thermal decomposition of tetraethylammonium in zeolite .beta The Journal of Physical Chemistry, 1992, 96, 3807-3811.	2.9	91
20	Organosilicon polymers: pyrolysis chemistry of poly[(dimethylsilylene)diacetylene]. Organometallics, 1992, 11, 2507-2513.	2.3	90
21	Combinedab initio computational and experimental multinuclear solid-state magnetic resonance study of phenylphosphonic acid. Magnetic Resonance in Chemistry, 2004, 42, 445-452.	1.9	88
22	Materials chemistry communications. Preparation of monolithic metal oxide gels by a non-hydrolytic sol–gel process. Journal of Materials Chemistry, 1992, 2, 673-674.	6.7	85
23	Nonhydrolytic Solâ^'Gel Process:Â Aluminum Titanate Gels. Chemistry of Materials, 1997, 9, 1098-1102.	6.7	77
24	Control of the Texture of Titaniaâ `Silica Mixed Oxides Prepared by Nonhydrolytic Solâ `Gel. Chemistry of Materials, 2004, 16, 5380-5386.	6.7	73
25	Phosphonate monolayers functionalized by silver thiolate species as antibacterial nanocoatings on titanium and stainless steel. Journal of Materials Chemistry, 2009, 19, 141-149.	6.7	72
26	One-step non-hydrolytic sol–gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation. Applied Catalysis B: Environmental, 2010, 94, 38-45.	20.2	72
27	Syntheses, Characterizations, and Single-Crystal X-ray Structures of Soluble Titanium Alkoxide Phosphonates. Inorganic Chemistry, 2000, 39, 3325-3332.	4.0	70
28	Design of SiO ₂ â^'Al ₂ O ₃ â^'MoO ₃ Metathesis Catalysts by Nonhydrolytic Solâ^'Gel. Chemistry of Materials, 2009, 21, 2817-2824.	6.7	70
29	Poly(vinylsilane): a precursor to silicon carbide. 1. Preparation and characterization. Organometallics, 1991, 10, 1457-1461.	2.3	69
30	Influence of the nature of the organic precursor on the textural and chemical properties of silsesquioxane materials. Journal of Materials Chemistry, 1998, 8, 2707-2713.	6.7	69
31	Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol–gel route. Catalysis Today, 2010, 157, 125-130.	4.4	67
32	Syntheses and single-crystal structures of novel soluble phosphonato- and phosphinato-bridged titanium oxo alkoxides. Journal of the Chemical Society Dalton Transactions, 1999, , 1537-1538.	1.1	64
33	170 MAS NMR Study of the Bonding Mode of Phosphonate Coupling Molecules in a Titanium Oxo-Alkoxo-Phosphonate and in Titania-Based Hybrid Materials. Chemistry of Materials, 2003, 15, 4098-4103.	6.7	60
34	Non-hydrolytic sol–gel process: zirconium titanate gels. Journal of Materials Chemistry, 1997, 7, 279-284.	6.7	58
35	In vitro and in vivo characterization of antibacterial activity and biocompatibility: A study on silver-containing phosphonate monolayers on titanium. Acta Biomaterialia, 2015, 15, 266-277.	8.3	58
36	Olefin metathesis with mesoporous rhenium–silicium–aluminum mixed oxides obtained via a one-step non-hydrolytic sol–gel route. Journal of Catalysis, 2013, 301, 233-241.	6.2	53

#	Article	IF	CITATIONS
37	Interlayer surface modification of the protonated ion-exchangeable layered perovskite HLaNb ₂ O ₇ • <i>x</i> H ₂ O with organophosphonic acids. Chemistry of Materials, 2009, 21, 4155-4162.	6.7	52
38	Non-hydrolytic synthesis of mesoporous silica–titania catalysts for the mild oxidation of sulfur compounds with hydrogen peroxide. Chemical Communications, 2008, , 5357.	4.1	50
39	Nonhydrolytic vanadia-titania xerogels: Synthesis, characterization, and behavior in the selective catalytic reduction of NO by NH3. Applied Catalysis B: Environmental, 2006, 69, 49-57.	20.2	46
40	Perfect and nearly perfect silsesquioxane (SQs) nanoconstruction sites and Janus SQs. Journal of Sol-Gel Science and Technology, 2008, 46, 335-347.	2.4	46
41	Recent advances in the synthesis of inorganic materials via non-hydrolytic condensation and related low-temperature routes. Journal of Materials Chemistry A, 2013, 1, 11504.	10.3	46
42	Novel non-hydrolytic sol-gel route to metal oxides. Journal of Sol-Gel Science and Technology, 1994, 2, 25-28.	2.4	44
43	Single- and Double-Layered Organically Modified Nanosheets by Selective Interlayer Grafting and Exfoliation of Layered Potassium Hexaniobate. Langmuir, 2014, 30, 1169-1175.	3.5	44
44	First principles NMR calculations of phenylphosphinic acid C6H5HPO(OH): Assignments, orientation of tensors by local field experiments and effect of molecular motion. Journal of Magnetic Resonance, 2007, 187, 131-140.	2.1	43
45	Role of Redistribution Reactions in the Polymer Route to Silicon–Carbon–Oxygen Ceramics. Journal of the American Ceramic Society, 2002, 85, 1185-1189.	3.8	42
46	A non-hydrolytic sol–gel route to highly active MoO3–SiO2–Al2O3 metathesis catalysts. Catalysis Science and Technology, 2012, 2, 1157.	4.1	42
47	Ethylene to Propylene by One-Pot Catalytic Cascade Reactions. ACS Catalysis, 2015, 5, 2774-2777.	11.2	42
48	One-Step Synthesis of Mesoporous Hybrid Titaniaâ^'Silica Xerogels for the Epoxidation of Alkenes. Chemistry of Materials, 2006, 18, 4707-4709.	6.7	39
49	Mild oxidation of bulky organic compounds with hydrogen peroxide over mesoporous TiO2-SiO2 xerogels prepared by non-hydrolytic sol–gel. Applied Catalysis B: Environmental, 2010, 97, 407-413.	20.2	39
50	Nonhydrolytic sol-gel routes to layered metal(IV) and silicon phosphonates. Journal of Materials Chemistry, 1998, 8, 1827-1833.	6.7	38
51	Intercalation of Benzoxaborolate Anions in Layered Double Hydroxides: Toward Hybrid Formulations for Benzoxaborole Drugs. Chemistry of Materials, 2015, 27, 1242-1254.	6.7	37
52	NMR and EPR Characterization of Functionalized Nanodiamonds. Journal of Physical Chemistry C, 2015, 119, 12408-12422.	3.1	36
53	Synthesis and Characterization of Crystalline Structures Based on Phenylboronate Ligands Bound to Alkaline Earth Cations. Inorganic Chemistry, 2011, 50, 7802-7810.	4.0	35
54	Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions. Physical Chemistry Chemical Physics, 2015, 17, 19173-19182.	2.8	32

#	Article	IF	CITATIONS
55	Organosilsesquioxaneâ^'Titanium Oxide Hybrids by Nonhydrolytic Solâ^'Gel Processes. Study of the Rearrangement of Siâ^'Oâ^'Ti Bonds. Chemistry of Materials, 2003, 15, 1530-1534.	6.7	31
56	Organosilicon polymers: pyrolysis of poly[(silanylene)diethynylene]s. Journal of Organometallic Chemistry, 1990, 396, C35-C38.	1.8	29
57	Novel non-hydrolytic synthesis of a V2O5–TiO2xerogel for the selective catalytic reduction of NOxby ammonia. Chemical Communications, 2004, , 2214-2215.	4.1	28
58	Preparation of Transition Metal Oxides By A Nonhydrolytic Sol-Gel Process. Materials Research Society Symposia Proceedings, 1994, 346, 339.	0.1	27
59	Nonhydrolytic synthesis and structural study of methoxyl-terminated polysiloxane D/Q resins. Journal of Polymer Science Part A, 1998, 36, 2415-2425.	2.3	27
60	Reactive and Organosoluble Anatase Nanoparticles by a Surfactant-Free Nonhydrolytic Synthesis. Chemistry of Materials, 2010, 22, 4519-4521.	6.7	27
61	A combined experimental-computational study of benzoxaborole crystal structures. CrystEngComm, 2014, 16, 4999.	2.6	27
62	Surface modification of calcium carbonate with phosphonic acids. Journal of Materials Chemistry, 2012, 22, 1212-1218.	6.7	26
63	Structural study of calcium phosphonates: a combined synchrotron powder diffraction, solid-state NMR and first-principle calculations approach. CrystEngComm, 2013, 15, 8763.	2.6	26
64	Synthesis and characterization of microporous pillared αâ€zirconium phosphate–biphenylenebis(phosphonate). Journal of Materials Chemistry, 1999, 9, 2553-2557.	6.7	25
65	Surfactant-Free Organo-Soluble Silicaâ^'Titania and Silica Nanoparticles. Chemistry of Materials, 2009, 21, 2577-2579.	6.7	24
66	Non-hydrolytic synthesis of hierarchical TiO2 nanostructures using natural cellulosic materials as both oxygen donors and templates. New Journal of Chemistry, 2012, 36, 2196.	2.8	23
67	Simultaneous Phase Transfer and Surface Modification of TiO ₂ Nanoparticles Using Alkylphosphonic Acids: Optimization and Structure of the Organosols. Langmuir, 2015, 31, 10966-10974.	3.5	23
68	Avoiding rhenium loss in non-hydrolytic synthesis of highly active Re–Si–Al olefin metathesis catalysts. Catalysis Communications, 2015, 58, 183-186.	3.3	23
69	Anchoring of Phosphorus-Containing Cobaltabisdicarbollide Derivatives to Titania Surface. Langmuir, 2010, 26, 12185-12189.	3.5	22
70	High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals. Journal of Materials Research, 2011, 26, 2355-2368.	2.6	21
71	Organo-lined alumina surface from covalent attachment of alkylphosphonate chains in aqueous solution. New Journal of Chemistry, 2010, 34, 1424.	2.8	20
72	Modification of silica by an organic monolayer in aqueous medium using octylphosphonic acid and aluminium species. Journal of Materials Chemistry, 2011, 21, 8199.	6.7	20

#	Article	IF	CITATIONS
73	Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology. Journal of Non-Crystalline Solids, 2011, 357, 3548-3555.	3.1	20
74	Mesoporous SnO ₂ –SiO ₂ and Sn–silica–carbon nanocomposites by novel non-hydrolytic templated sol–gel synthesis. RSC Advances, 2016, 6, 68739-68747.	3.6	20
75	One-step non-hydrolytic sol-gel synthesis of mesoporous SiO2-Al2O3-NiO catalysts for ethylene oligomerization. Microporous and Mesoporous Materials, 2021, 322, 111165.	4.4	20
76	A highly efficient silver niobium alumina catalyst for the selective catalytic reduction of NO by n-decane. Chemical Communications, 2011, 47, 10728.	4.1	19
77	Reactive and Organosoluble SnO ₂ Nanoparticles by a Surfactantâ€Free Nonâ€Hydrolytic Sol–Gel Route. European Journal of Inorganic Chemistry, 2011, 2011, 3644-3649.	2.0	19
78	Boronate Ligands in Materials: Determining Their Local Environment by Using a Combination of IR/Solidâ€6tate NMR Spectroscopies and DFT Calculations. Chemistry - A European Journal, 2013, 19, 880-891.	3.3	19
79	Hybrid materials and silica: drastic control of surfaces and porosity of xerogels via ageing temperature, and influence of drying step on polycondensation at silicon. Journal of Materials Chemistry, 2002, 12, 3021-3026.	6.7	18
80	Highâ€Surfaceâ€Area SiO 2 –ZrO 2 Mixed Oxides as Catalysts for the Friedel–Craftsâ€Type Alkylation of Arenes with Alcohols and Tandem Cyclopropanation Reactions. ChemCatChem, 2012, 4, 1813-1818.	3.7	18
81	Improvement of the Oxidative Stability of Nanodiamonds by Surface Phosphorylation. Chemistry of Materials, 2013, 25, 2051-2055.	6.7	18
82	Novel aluminium phenyl, benzyl, and bromobenzylphosphonates: structural characterisation and hydration–dehydration reactions. Journal of Materials Chemistry, 2000, 10, 1593-1601.	6.7	17
83	Removal of dimethylsulfoxide from wastewater using mild oxidation with H2O2 over Ti-based catalysts. Chemosphere, 2009, 77, 1065-1068.	8.2	17
84	Sol–gel processing of phosphonate-based organic–inorganic hybrid materials. Journal of the Ceramic Society of Japan, 2015, 123, 709-713.	1.1	17
85	Formulation of benzoxaborole drugs in PLLA: from materials preparation to in vitro release kinetics and cellular assays. Journal of Materials Chemistry B, 2016, 4, 257-272.	5.8	17
86	Sustainable polysaccharide-derived mesoporous carbons (Starbon®) as additives in lithium-ion batteries negative electrodes. Journal of Materials Chemistry A, 2017, 5, 24380-24387.	10.3	17
87	Non-hydrolytic SiO2–TiO2 mesoporous xerogels—Efficient catalysts for the mild oxidation of sulfur organic compounds with hydrogen peroxide. Catalysis Today, 2010, 157, 270-274.	4.4	16
88	Water-Stable, Nonsiliceous Hybrid Materials with Tunable Porosity and Functionality: Bridged Titania-Bisphosphonates. Chemistry of Materials, 2020, 32, 2910-2918.	6.7	16
89	Thermal isomerization of alternating silphenylene-siloxane copolymer. Journal of Polymer Science Part A, 1994, 32, 187-191.	2.3	15
90	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 99-102.	2.4	15

#	Article	IF	CITATIONS
91	Cold-titania interface toughening and thermal conductance enhancement using an organophosphonate nanolayer. Applied Physics Letters, 2013, 102, 201605.	3.3	15
92	Structure of alumina-silica nanoparticles grafted with alkylphosphonic acids in poly(ethylacrylate) nanocomposites. Polymer, 2016, 97, 138-146.	3.8	15
93	Carbonization of polysaccharides in FeCl3/BmimCl ionic liquids: Breaking the capacity barrier of carbon negative electrodes in lithium ion batteries. Journal of Power Sources, 2020, 474, 228575.	7.8	15
94	Selective catalytic oxidation of H2S using nonhydrolytic vanadia-titania xerogels. Korean Journal of Chemical Engineering, 2009, 26, 377-381.	2.7	14
95	Hydrothermal activation of silver supported alumina catalysts prepared by sol–gel method: Application to the selective catalytic reduction (SCR) of NOx by n-decane. Applied Catalysis B: Environmental, 2013, 134-135, 258-264.	20.2	14
96	Surface Functionalization of Detonation Nanodiamonds by Phosphonic Dichloride Derivatives. Langmuir, 2014, 30, 9239-9245.	3.5	14
97	Phase transfer of TiO ₂ nanoparticles from water to ionic liquid triggered by phosphonic acid grafting. Soft Matter, 2017, 13, 8023-8026.	2.7	13
98	Structural effects on the viscoelasticity of polydimethylsiloxane networks close to the sol-gel threshold. Journal of Rheology, 2004, 48, 39-51.	2.6	12
99	Heterogeneous Single-Site Catalysts for C–H Activation Reactions: Pd(II)-Loaded S,O-Functionalized Metal Oxide-Bisphosphonates. ACS Applied Materials & Interfaces, 2020, 12, 47457-47466.	8.0	12
100	Direct synthesis of ordered mesoporous silica functionalized by Si–H groups. Journal of Materials Chemistry, 2006, 16, 1606-1607.	6.7	11
101	Work function tuning at Au-HfO2 interfaces using organophosphonate monolayers. Applied Physics Letters, 2016, 108, .	3.3	11
102	Green electrode processing using a seaweed-derived mesoporous carbon additive and binder for LiMn ₂ O ₄ and LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ lithium ion battery electrodes. Sustainable Energy and Fuels, 2019, 3, 450-456.	4.9	11
103	Immobilization of platinum(ii) and palladium(ii) complexes on metal oxides by sol–gel processing and surface modification using bifunctional phosphine–phosphonate esters. New Journal of Chemistry, 2008, 32, 1519.	2.8	10
104	Grafting of Metallacarboranes onto Selfâ€Assembled Monolayers Deposited on Silicon Wafers. Chemistry - an Asian Journal, 2012, 7, 277-281.	3.3	10
105	Tuning of noble metal work function with organophosphonate nanolayers. Applied Physics Letters, 2014, 105, .	3.3	10
106	Adsorption of benzoxaboroles on hydroxyapatite phases. Acta Biomaterialia, 2016, 41, 342-350.	8.3	10
107	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 335-338.	2.4	9
108	Lithium insertion properties of mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres prepared by non-hydrolytic sol–gel. Journal of Sol-Gel Science and Technology, 2016, 79, 270-278.	2.4	9

.

#	Article	IF	CITATIONS
109	Ethers as Oxygen Donor and Carbon Source in Nonâ€hydrolytic Sol–Gel: Oneâ€Pot, Atomâ€Economic Synthesis of Mesoporous TiO ₂ –Carbon Nanocomposites. Chemistry - A European Journal, 2018, 24, 4982-4990.	3.3	9
110	Studying the thermo-oxidative stability of chars using pyrolysis-combustion flow calorimetry. Polymer Degradation and Stability, 2016, 134, 340-348.	5.8	8
111	Functionalized nanodiamond as potential synergist in flame-retardant ethylene vinyl acetate. Diamond and Related Materials, 2017, 76, 141-149.	3.9	8
112	Tuning Local Nanoparticle Arrangements in TiO ₂ –Polymer Nanocomposites by Grafting of Phosphonic Acids. Macromolecules, 2017, 50, 7721-7729.	4.8	8
113	Alginic acid-derived mesoporous carbonaceous materials (Starbon®) as negative electrodes for lithium ion batteries: Importance of porosity and electronic conductivity. Journal of Power Sources, 2018, 406, 18-25.	7.8	8
114	Alginic acid aquagel as a template and carbon source in the synthesis of Li ₄ Ti ₅ O ₁₂ /C nanocomposites for application as anodes in Li-ion batteries. RSC Advances, 2018, 8, 32558-32564.	3.6	8
115	Alginic acid-derived mesoporous carbon (Starbon®) as template and reducing agent for the hydrothermal synthesis of mesoporous LiMn ₂ O ₄ grafted with carbonaceous species. Journal of Materials Chemistry A, 2018, 6, 14392-14399.	10.3	8
116	Synthesis of a NO-releasing lamellar silsesquioxane by topotactic exchange of CO2 for NO. Journal of Materials Chemistry, 2009, 19, 5723.	6.7	7
117	Electrochemical analysis of the sol–gel synthesis of phosphonate-modified titania through the diffusion of a functionalised ferroceneâ~†. Talanta, 2005, 66, 1-5.	5.5	6
118	Characterisation of metal oxide films deposited by non-hydrolytic ALD. Surface and Interface Analysis, 2006, 38, 740-743.	1.8	6
119	Non-hydrolytic Sol–Gel Preparation of Silver Alumina Based Catalysts for the HC-SCR of NOx. Topics in Catalysis, 2013, 56, 34-39.	2.8	6
120	Decreasing friction during Al cold forming using a nanomolecular layer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 020605.	2.1	6
121	Tuning Texture and Morphology of Mesoporous TiO2 by Non-Hydrolytic Sol-Gel Syntheses. Molecules, 2018, 23, 3006.	3.8	6
122	Dehydration of Alginic Acid Cryogel by TiCl 4 vapor: Direct Access to Mesoporous TiO 2 @C Nanocomposites and Their Performance in Lithiumâ€ion Batteries. ChemSusChem, 2019, 12, 2660-2670.	6.8	6
123	Acetic Anhydride as an Oxygen Donor in the Nonâ€Hydrolytic Sol–Gel Synthesis of Mesoporous TiO 2 with High Electrochemical Lithium Storage Performances. Chemistry - A European Journal, 2019, 25, 4767-4774.	3.3	6
124	One-step nonhydrolytic sol–gel synthesis of mesoporous TiO ₂ phosphonate hybrid materials. Beilstein Journal of Nanotechnology, 2019, 10, 356-362.	2.8	5
125	Non-hydrolytic sol–gel synthesis of polypropylene/TiO2 composites by reactive extrusion. Journal of Sol-Gel Science and Technology, 2021, 99, 39.	2.4	5
126	TinO2nâ^'1 Suboxide Phases in TiO2/C Nanocomposites Engineered by Non-hydrolytic Sol–Gel with Enhanced Electrocatalytic Properties. Nanomaterials, 2020, 10, 1789.	4.1	4

#	Article	IF	CITATIONS
127	Water Formation in Nonâ€Hydrolytic Sol–Gel Routes: Selective Synthesis of Tetragonal and Monoclinic Mesoporous Zirconia as a Case Study. Chemistry - A European Journal, 2021, 27, 2670-2682.	3.3	4
128	Molecular length effect on work function shifts at copper-organophosphonate-hafnia interfaces. Applied Physics Letters, 2017, 110, .	3.3	3
129	Tailoring Al-SiO2 interfacial work function using an organophosphonate nanolayer. Applied Physics Letters, 2017, 111, .	3.3	3
130	Viscoelasticity of polydimethylsiloxane at the sol-gel threshold: structural effects. Rheologica Acta, 2004, 43, 550-558.	2.4	2
131	Advanced Solid State NMR Techniques for the Investigation of the Organic-Mineral Interfaces in Biomaterials. Materials Research Society Symposia Proceedings, 2009, 1236, 1.	0.1	2
132	Tuning Polymer/TiO2 Nanocomposites Morphology by In Situ Non-Hydrolytic Sol-Gel Syntheses in Viscous Polymer Medium: Influence of the Polymer Nature and Oxygen Donor. Polymers, 2022, 14, 2273.	4.5	2
133	Nonhydrolytic Sol-Gel Process: Aluminium and Zirconium Titanate Gels. Journal of Sol-Gel Science and Technology, 1997, 8, 89-93.	2.4	1
134	Chemical bonding and nanomolecular length effects on work function at Au-organophosphonate-HfO2 interfaces. Applied Physics Letters, 2017, 110, 181604.	3.3	1
135	Nonhydrolytic Sol-Gel Technology. , 2016, , 1-27.		1
136	Nonhydrolytic Sol-Gel Technology. , 2018, , 1039-1065.		1
137	Self-Assembled Monolayers of 12-Mercaptododecylphosphonic Acid on Titania Particles; Application to the Extraction of Heavy Metals. Materials Research Society Symposia Proceedings, 2004, 847, 192.	0.1	0
138	Hybrid Organic—Inorganic Materials Based on Organophosphorus Derivatives. ChemInform, 2004, 35, no.	0.0	0
139	Hydrolytic vs. Nonhydrolytic Sol-Gel in Preparation of Mixed Oxide Silica–Alumina Catalysts for Esterification. Molecules, 2022, 27, 2534.	3.8	0