Dean L Hesterberg

List of Publications by Citations

Source: https://exaly.com/author-pdf/5282337/dean-l-hesterberg-publications-by-citations.pdf

Version: 2024-04-29

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

104 3,797 34 59 g-index

109 4,173 4.4 5.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
104	Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant. <i>Bioresource Technology</i> , 2003 , 89, 229-36	11	327
103	Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. <i>Journal of Environmental Quality</i> , 2003 , 32, 1809-19	3.4	220
102	Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	172
101	Bonding of Hg(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. <i>Environmental Science & Environmental Sc</i>	10.3	169
100	XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals. <i>Environmental Science & Environmental Sci</i>	10.3	165
99	Molecular scale characteristics of Cu(II) bonding in goethiteBumate complexes. <i>Geochimica Et Cosmochimica Acta</i> , 2001 , 65, 1355-1366	5.5	158
98	Effects of Adsorbed Humic Acid on Surface Charge and Flocculation of Kaolinite. <i>Soil Science Society of America Journal</i> , 1997 , 61, 101-108	2.5	142
97	XAFS study of adsorbed and mineral forms of phosphate. <i>Journal of Synchrotron Radiation</i> , 1999 , 6, 636	5-8.4	126
96	Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. Journal of Environmental Quality, 2011 , 40, 751-66	3.4	103
95	Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. <i>Geoderma</i> , 2011 , 161, 194-201	6.7	99
94	Soil Organic Matter Effects on Phosphorus Sorption: A Path Analysis. <i>Soil Science Society of America Journal</i> , 2009 , 73, 360-366	2.5	93
93	Phosphate bonding configuration on ferrihydrite based on molecular orbital calculations and XANES fingerprinting. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 4405-4415	5.5	91
92	Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. Journal of Environmental Quality, 2006 , 35, 1983-93	3.4	91
91	Effects of pH and Organic Acids on Orthophosphate Solubility in an Acidic, Montmorillonitic Soil. <i>Soil Science Society of America Journal</i> , 1986 , 50, 45-52	2.5	86
90	XANES Determination of Adsorbed Phosphate Distribution between Ferrihydrite and Boehmite in Mixtures. <i>Soil Science Society of America Journal</i> , 2004 , 68, 460-469	2.5	77
89	Phosphate bonding on noncrystalline Al/Fe-hydroxide coprecipitates. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 6283-9	10.3	76
88	Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. <i>International Journal of Phytoremediation</i> , 2013 , 15, 844-60	3.9	68

(1993-2015)

87	Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden. <i>Geoderma</i> , 2015 , 241-242, 68-74	6.7	63
86	Dissolution of trace element contaminants from two coastal plain soils as affected by pH. <i>Journal of Environmental Quality</i> , 2004 , 33, 891-901	3.4	60
85	Principal Component Analysis Approach for Modeling Sulfur K-XANES Spectra of Humic Acids. <i>Soil Science Society of America Journal</i> , 2002 , 66, 83-91	2.5	60
84	Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate. <i>Journal of Environmental Quality</i> , 2003 , 32, 851-64	3.4	58
83	Principal Component Analysis Approach for Modeling Sulfur K-XANES Spectra of Humic Acids. <i>Soil Science Society of America Journal</i> , 2002 , 66, 83	2.5	56
82	X-ray Absorption Spectroscopy of Lead and Zinc Speciation in a Contaminated Groundwater Aquifer. <i>Environmental Science & Environmental Science & Envi</i>	10.3	55
81	Dispersion of natural arsenic in the Malcantone watershed, Southern Switzerland: field evidence for repeated sorption desorption and oxidation deduction processes. <i>Geoderma</i> , 2004 , 122, 205-234	6.7	55
80	XANES speciation of P in environmental samples: an assessment of filter media for on-site wastewater treatment. <i>Environmental Science & Environmental & Environmental</i>	10.3	51
79	Biogeochemical cycles and processes leading to changes in mobility of chemicals in soils. <i>Agriculture, Ecosystems and Environment</i> , 1998 , 67, 121-133	5.7	49
78	Dissolution of phosphate in a phosphorus-enriched ultisol as affected by microbial reduction. Journal of Environmental Quality, 2004 , 33, 1793-802	3.4	44
77	Macroscale Chemical Properties and X-Ray Absorption Spectroscopy of Soil Phosphorus. <i>Developments in Soil Science</i> , 2010 , 34, 313-356	1.3	43
76	Iron speciation in soft-water lakes and soils as determined by EXAFS spectroscopy and geochemical modelling. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 105, 172-186	5.5	42
75	Nitrate Leaching in a Tile-Drained Silt Loam Soil. Soil Science Society of America Journal, 2000, 64, 517-52	27 .5	42
74	Stability of Reduced Organic Sulfur in Humic Acid as Affected by Aeration and pH. <i>Soil Science Society of America Journal</i> , 2001 , 65, 704-709	2.5	41
73	Bioconcentration and biotransformation of selenite versus selenate exposed periphyton and subsequent toxicity to the Mayfly Centroptilum triangulifer. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 7965-73	10.3	40
72	X-ray microspectroscopy and chemical reactions in soil microsites. <i>Journal of Environmental Quality</i> , 2011 , 40, 667-78	3.4	38
71	Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population. Journal of Environmental Quality, 2006 , 35, 849-57	3.4	36
70	Thermodynamic Modeling of Zinc, Cadmium, and Copper Solubilities in a Manured, Acidic Loamy-Sand Topsoil. <i>Journal of Environmental Quality</i> , 1993 , 22, 681-688	3.4	34

69	Evolution of phosphorus speciation with depth in an agricultural soil profile. <i>Geoderma</i> , 2016 , 280, 29-3	8 7 6.7	33
68	Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: Insights gained from batch experiments and XANES spectroscopy. <i>Science of the Total Environment</i> , 2016 , 566-567, 1410-1419	10.2	33
67	Mixed anion (phosphate/oxalate) bonding to iron(III) materials. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2301-8	16.4	30
66	Iron and Phosphate Dissolution during Abiotic Reduction of Ferrihydrite-Boehmite Mixtures. <i>Soil Science Society of America Journal</i> , 2006 , 70, 1318-1327	2.5	30
65	Chemical Composition, Speciation, and Elemental Associations in Coal Fly Ash Samples Related to the Kingston Ash Spill. <i>Energy & Documents</i> 29, 954-967	4.1	26
64	Speciation of hepatic Zn in trout exposed to elevated waterborne Zn using X-ray absorption spectroscopy. <i>Environmental Science & Environmental Scienc</i>	10.3	26
63	Siderophore-promoted dissolution of cobalt from hydroxide minerals. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 2915-2925	5.5	24
62	Effect of Liquid Animal Manure Application on the Solubilization of Heavy Metals from Soil. <i>International Journal of Environmental Analytical Chemistry</i> , 1992 , 46, 25-39	1.8	24
61	Critical Coagulation Concentrations of Sodium and Potassium Illite as Affected by pH. <i>Soil Science Society of America Journal</i> , 1990 , 54, 735-739	2.5	23
60	Chemical Speciation of Potentially Toxic Trace Metals in Coal Fly Ash Associated with the Kingston Fly Ash Spill. <i>Energy & Damp; Fuels</i> , 2017 , 31, 9652-9659	4.1	22
59	Comparison of phosphate adsorption on clay minerals for soilless root media. <i>Communications in Soil Science and Plant Analysis</i> , 1999 , 30, 747-756	1.5	20
58	Soil Weathering as an Engine for Manganese Contamination of Well Water. <i>Environmental Science & Environmental & Environmental</i>	10.3	20
57	Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by EXRF. <i>Environmental Pollution</i> , 2020 , 260, 114025	9.3	17
56	Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales. <i>Journal of Environmental Quality</i> , 2017 , 46, 1190-1197	3.4	15
55	Flocculation Series Test Yielding Time-Invariant Critical Coagulation Concentrations of Sodium Illite. <i>Soil Science Society of America Journal</i> , 1990 , 54, 729-735	2.5	14
54	Iron(III) Coordination and Phosphate Sorption in Peat Reacted with Ferric or Ferrous Iron. <i>Soil Science Society of America Journal</i> , 2012 , 76, 101-109	2.5	13
53	XANES Determination of Adsorbed Phosphate Distribution between Ferrihydrite and Boehmite in Mixtures 2004 , 68, 460		13
52	Effects of stopping liming on abandoned agricultural land. <i>Land Degradation and Development</i> , 1993 , 4, 257-267	4.4	12

(1998-2020)

51	A Probabilistic Approach to Phosphorus Speciation of Soils Using P K-edge XANES Spectroscopy with Linear Combination Fitting. <i>Soil Systems</i> , 2020 , 4, 26	3.5	11
50	Mechanisms of enhanced inorganic phosphorus accumulation by periphyton in paddy fields as affected by calcium and ferrous ions. <i>Science of the Total Environment</i> , 2017 , 609, 466-475	10.2	11
49	Soil Carbon Fractions from an Alluvial Soil Texture Gradient in North Carolina. <i>Soil Science Society of America Journal</i> , 2017 , 81, 1096-1106	2.5	11
48	DRAINMOD Simulation of macropore flow at subsurface drained agricultural fields: Model modification and field testing. <i>Agricultural Water Management</i> , 2020 , 242, 106401	5.9	11
47	Calcium Sulfate as a Flocculant to Reduce Sedimentation Basin Water Turbidity. <i>Journal of Environmental Quality</i> , 1997 , 26, 1605-1611	3.4	10
46	Stability of copper sulfide in a contaminated soil. <i>Journal of Synchrotron Radiation</i> , 1999 , 6, 630-2	2.4	10
45	Calcium-Magnesium Exchange on Illite in the Presence of Adsorbed Sodium. <i>Soil Science Society of America Journal</i> , 1986 , 50, 905-909	2.5	10
44	Multivariate spatial modeling of conditional dependence in microscale soil elemental composition data. <i>Spatial Statistics</i> , 2014 , 9, 93-108	2.2	9
43	Reaction Times of Twenty Limestones. Communications in Soil Science and Plant Analysis, 2007, 38, 1775	-1.783	9
42	Chemistry of subsurface drain discharge from an agricultural polder soil. <i>Agricultural Water Management</i> , 2006 , 86, 220-228	5.9	9
41	Effects of exogenous citric acid on the concentration and spatial distribution of Ni, Zn, Co, Cr, Mn and Fe in leaves of Noccaea caerulescens grown on a serpentine soil. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122992	12.8	9
40	Sensitivity analysis of the DRAINWAT model applied to an agricultural watershed in the lower coastal plain, North Carolina, USA. <i>Water and Environment Journal</i> , 2012 , 26, 130-145	1.7	8
39	Soybean root growth in relation to ionic composition in magnesium-amended acid subsoils: Implications on root citrate ameliorating aluminum constraints. <i>Soil Science and Plant Nutrition</i> , 2007 , 53, 753-763	1.6	8
38	Metal Bioavailability and Speciation in a Wetland Tailings Repository Amended with Biosolids Compost, Wood Ash, and Sulfate 2003 , 32, 851		8
37	Temporal Changes in Cadmium Speciation in Brazilian Soils Evaluated Using Cd LIII-Edge XANES and Chemical Fractionation. <i>Journal of Environmental Quality</i> , 2017 , 46, 1206-1214	3.4	7
36	Periphyton and abiotic factors influencing arsenic speciation in aquatic environments. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 903-913	3.8	7
35	Nonphytotoxic Aluminum-Peat Complexes Suppress Phytophthora parasitica. <i>Phytopathology</i> , 2001 , 91, 1092-7	3.8	7
34	Field Evaluation of Calcium Sulfate as a Chemical Flocculant for Sedimentation Basins. <i>Journal of Environmental Quality</i> , 1998 , 27, 669-678	3.4	7

33	Optimization of Data Processing Minimizes Impact of Self-Absorption on Phosphorus Speciation Results by P K-Edge XANES. <i>Soil Systems</i> , 2019 , 3, 61	3.5	6
32	Accessing Legacy Phosphorus in Soils. <i>Soil Systems</i> , 2020 , 4, 74	3.5	6
31	Leaching of nutrients and trace elements from stockpiled turkey litter into soil. <i>Journal of Environmental Quality</i> , 2009 , 38, 1053-65	3.4	6
30	Biomass of Tomato Seedlings Exposed to an Allelopathic Phenolic Acid and Enriched Atmospheric Carbon Dioxide. <i>Water, Air, and Soil Pollution</i> , 1998 , 106, 123-136	2.6	6
29	Effects of Ionic Strength, Calcium, and Citrate on Orthophosphate Solubility in an Acidic, Montmorillonitic Soil. <i>Soil Science Society of America Journal</i> , 1986 , 50, 623-627	2.5	6
28	Increasing Soluble Phosphate Species by Treatment of Phosphate Rocks with Acidic Waste. <i>Journal of Environmental Quality</i> , 2016 , 45, 1988-1997	3.4	6
27	Phosphate Solubilization from Poorly Crystalline Iron and Aluminum Hydroxides by AVAIL Copolymer. <i>Soil Science Society of America Journal</i> , 2017 , 81, 20-28	2.5	5
26	Multi-element effects on arsenate accumulation in a geochemical matrix determined using μ-XRF, μ-XANES and spatial statistics. <i>Journal of Synchrotron Radiation</i> , 2019 , 26, 1967-1979	2.4	5
25	Periphyton uptake and trophic transfer of coal fly-ash-derived trace elements. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2991-2996	3.8	5
24	Differential Sensitivity of Phytophthora parasitica var. nicotianae and Thielaviopsis basicola to Monomeric Aluminum Species. <i>Phytopathology</i> , 2006 , 96, 212-20	3.8	5
23	Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release. <i>Integrated Environmental Assessment and Management</i> , 2016 , 12, 353-63	2.5	5
22	Synchrotron-based X-ray microscopy for assessing elements distribution and speciation in mangrove tree-rings. <i>Results in Chemistry</i> , 2021 , 3, 100121	2.1	5
21	Bayesian Spectral Modeling for Multivariate Spatial Distributions of Elemental Concentrations in Soil. <i>Bayesian Analysis</i> , 2018 , 13,	2.3	5
20	Volumetric Treatment Efficiencies of Some Commercial Clay Stabilizers. <i>SPE Production Engineering</i> , 1991 , 6, 57-62		4
19	DRAINMOD-P: A Model for Simulating Phosphorus Dynamics and Transport in Drained Agricultural Lands: I. Model Development. <i>Transactions of the ASABE</i> , 2021 , 64, 1835-1848	0.9	4
18	Optimizing pyrolysis conditions for recycling pig bones into phosphate fertilizer. <i>Waste Management</i> , 2021 , 131, 249-257	8.6	4
17	Phosphate Speciation and Citrate-Induced Mobilization of P in an Acric Oxisol. <i>Communications in Soil Science and Plant Analysis</i> , 2017 , 48, 1977-1988	1.5	3
16	Synchrotron radiation-based spatial methods in environmental biogeochemistry 2020 , 231-265		3

LIST OF PUBLICATIONS

15	LACK OF SOYBEAN ROOT ELONGATION RESPONSES TO MICROMOLAR MAGNESIUM ADDITIONS AND FATE OF ROOT-EXUDED CITRATE IN ACID SUBSOILS. <i>Journal of Plant Nutrition</i> , 2010 , 33, 219-239	2.3	3
14	Rheology of Sodium and Potassium Illite Suspensions in Relation to Colloidal Stability. <i>Soil Science Society of America Journal</i> , 1993 , 57, 697-704	2.5	3
13	Phosphate and Potassium Retention and Release during Chrysanthemum Production from Precharged Materials: I. Alumina. <i>Journal of the American Society for Horticultural Science</i> , 2000 , 125, 748-756	2.3	3
12	Microscale Heterogeneous Distribution and Speciation of Phosphorus in Soils Amended with Mineral Fertilizer and Cattle Manure Compost. <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 121	2.4	3
11	Efficacy of a Phosphate-Charged Soil Material in Supplying Phosphate for Plant Growth in Soilless Root Media. <i>International Journal of Agronomy</i> , 2016 , 2016, 1-10	1.9	2
10	Desorption Characteristics of Three Mineral Oxides and a Non-crystalline Aluminosilicate for Supplying Phosphate in Soilless Root Media. <i>Communications in Soil Science and Plant Analysis</i> , 2016 , 47, 753-760	1.5	1
9	Spatial statistical modeling of arsenic accumulation in microsites of diverse soils. <i>Geoderma</i> , 2022 , 411, 115697	6.7	1
8	Response to letter to the editor on synchrotron-based identification of reaction products in phosphorus fertilized alkaline soils. <i>Geoderma</i> , 2019 , 337, 150-151	6.7	1
7	Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. <i>Journal of Hazardous Materials</i> , 2021 , 408, 1248	1 ¹ 2.8	О
6	Phosphate solubilization from adsorbents and precipitates by different AVAIL polymers. <i>Soil Science Society of America Journal</i> , 2020 , 84, 1833-1845	2.5	
5	Importance of Limestone Specific Surface for Assessing Neutralization Effectiveness in Soilless Root Substrate. <i>Communications in Soil Science and Plant Analysis</i> , 2016 , 1-6	1.5	
4	Modeling impact of nitrogen carrier and concentration on root substrate pH. <i>Journal of Plant Nutrition</i> , 2017 , 40, 2101-2108	2.3	
3	Meeting Reports: A Passion for Synchrotron Science and its Future. <i>Synchrotron Radiation News</i> , 2005 , 18, 2-13	0.6	
2	Radiaß sficrotron na agricultura e cificia do solo. <i>Cificia E Cultura</i> , 2017 , 69, 52-55	0.3	
1	Acquisition of a microscope for in situ studies of hard and soft matter. <i>Microscopy and Microanalysis</i> . 2018 . 24, 2332-2333	0.5	