
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 1993, 18, 247-291.	9.1	6,464
2	What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Research Reviews, 1998, 28, 309-369.	9.1	3,468
3	The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology, 2007, 191, 391-431.	1.5	1,919
4	Parsing reward. Trends in Neurosciences, 2003, 26, 507-513.	4.2	1,712
5	Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 1996, 20, 1-25.	2.9	1,612
6	Dissecting components of reward: â€`liking', â€`wanting', and learning. Current Opinion in Pharmacology 2009, 9, 65-73.	' 1.7	1,530
7	Addiction. Annual Review of Psychology, 2003, 54, 25-53.	9.9	1,446
8	The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3137-3146.	1.8	1,353
9	The Neuroscience of Natural Rewards: Relevance to Addictive Drugs. Journal of Neuroscience, 2002, 22, 3306-3311.	1.7	1,246
10	Incentive-sensitization and addiction. Addiction, 2001, 96, 103-114.	1.7	1,186
11	Pleasure Systems in the Brain. Neuron, 2015, 86, 646-664.	3.8	1,040
12	Motivation concepts in behavioral neuroscience. Physiology and Behavior, 2004, 81, 179-209.	1.0	1,038
13	Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 2008, 199, 457-480.	1.5	1,011
14	â€~Liking' and â€~wanting' food rewards: Brain substrates and roles in eating disorders. Physiology and Behavior, 2009, 97, 537-550.	1.0	904
15	Liking, wanting, and the incentive-sensitization theory of addiction American Psychologist, 2016, 71, 670-679.	3.8	876
16	Intra-Accumbens Amphetamine Increases the Conditioned Incentive Salience of Sucrose Reward: Enhancement of Reward "Wanting―without Enhanced "Liking―or Response Reinforcement. Journal of Neuroscience, 2000, 20, 8122-8130.	1.7	716
17	The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Research, 2010, 1350, 43-64.	1.1	715
18	Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neuroscience and Biobehavioral Reviews, 2001, 25, 53-74.	2.9	622

#	Article	IF	CITATIONS
19	The psychology and neurobiology of addiction: an incentive–sensitization view. Addiction, 2000, 95, 91-117.	1.7	618
20	Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neuroscience and Biobehavioral Reviews, 2000, 24, 173-198.	2.9	612
21	Hedonic Hot Spot in Nucleus Accumbens Shell: Where Do Â-Opioids Cause Increased Hedonic Impact of Sweetness?. Journal of Neuroscience, 2005, 25, 11777-11786.	1.7	573
22	From prediction error to incentive salience: mesolimbic computation of reward motivation. European Journal of Neuroscience, 2012, 35, 1124-1143.	1.2	562
23	Neurobiology of rodent self-grooming and its value for translational neuroscience. Nature Reviews Neuroscience, 2016, 17, 45-59.	4.9	558
24	Unconscious Affective Reactions to Masked Happy Versus Angry Faces Influence Consumption Behavior and Judgments of Value. Personality and Social Psychology Bulletin, 2005, 31, 121-135.	1.9	541
25	Pleasures of the brain. Brain and Cognition, 2003, 52, 106-128.	0.8	533
26	Towards a functional neuroanatomy of pleasure and happiness. Trends in Cognitive Sciences, 2009, 13, 479-487.	4.0	508
27	The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction, 2000, 95, 91-117.	1.7	461
28	Hyperdopaminergic Mutant Mice Have Higher "Wanting―But Not "Liking―for Sweet Rewards. Journal of Neuroscience, 2003, 23, 9395-9402.	1.7	459
29	Ventral pallidum roles in reward and motivation. Behavioural Brain Research, 2009, 196, 155-167.	1.2	450
30	Psychoactive Drug Use in Evolutionary Perspective. Science, 1997, 278, 63-66.	6.0	414
31	Neuroscience of affect: brain mechanisms of pleasure and displeasure. Current Opinion in Neurobiology, 2013, 23, 294-303.	2.0	411
32	Unconscious Emotion. Current Directions in Psychological Science, 2004, 13, 120-123.	2.8	404
33	Incentive Sensitization by Previous Amphetamine Exposure: Increased Cue-Triggered "Wanting―for Sucrose Reward. Journal of Neuroscience, 2001, 21, 7831-7840.	1.7	390
34	Opioid Limbic Circuit for Reward: Interaction between Hedonic Hotspots of Nucleus Accumbens and Ventral Pallidum. Journal of Neuroscience, 2007, 27, 1594-1605.	1.7	386
35	Positive and Negative Motivation in Nucleus Accumbens Shell: Bivalent Rostrocaudal Gradients for GABA-Elicited Eating, Taste "Likingâ€łâ€œDisliking―Reactions, Place Preference/Avoidance, and Fear. Journal of Neuroscience, 2002, 22, 7308-7320.	1.7	370
36	Opioid site in nucleus accumbens shell mediates eating and hedonic â€~liking' for food: map based on microinjection Fos plumes. Brain Research, 2000, 863, 71-86.	1.1	349

#	Article	IF	CITATIONS
37	Hedonic Hot Spots in the Brain. Neuroscientist, 2006, 12, 500-511.	2.6	331
38	Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E255-64.	3.3	325
39	The Ventral Pallidum and Hedonic Reward: Neurochemical Maps of Sucrose "Liking" and Food Intake. Journal of Neuroscience, 2005, 25, 8637-8649.	1.7	321
40	Opioid Hedonic Hotspot in Nucleus Accumbens Shell: Mu, Delta, and Kappa Maps for Enhancement of Sweetness "Liking―and "Wanting― Journal of Neuroscience, 2014, 34, 4239-4250.	1.7	317
41	Endocannabinoid Hedonic Hotspot for Sensory Pleasure: Anandamide in Nucleus Accumbens Shell Enhances †Liking' of a Sweet Reward. Neuropsychopharmacology, 2007, 32, 2267-2278.	2.8	306
42	What is an unconscious emotion?(The case for unconscious "liking"). Cognition and Emotion, 2003, 17, 181-211.	1.2	297
43	Instant Transformation of Learned Repulsion into Motivational "Wanting― Current Biology, 2013, 23, 282-289.	1.8	285
44	Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: Implications for arousal and anhedonia hypotheses of dopamine function Behavioral Neuroscience, 1989, 103, 36-45.	0.6	277
45	Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. European Journal of Neuroscience, 2005, 22, 2617-2634.	1.2	263
46	Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Frontiers in Systems Neuroscience, 2015, 9, 90.	1.2	262
47	What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus?. Behavioral Neuroscience, 1991, 105, 3-14.	0.6	259
48	Model-based and model-free Pavlovian reward learning: Revaluation, revision, and revelation. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 473-492.	1.0	257
49	A Neural Computational Model of Incentive Salience. PLoS Computational Biology, 2009, 5, e1000437.	1.5	254
50	Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biology, 2005, 3, 4.	1.7	245
51	Neural correlates of social and nonsocial emotions: An fMRI study. NeuroImage, 2006, 31, 397-409.	2.1	245
52	Coding of Serial Order by Neostriatal Neurons: A "Natural Action―Approach to Movement Sequence. Journal of Neuroscience, 1998, 18, 2777-2787.	1.7	234
53	Sodium depletion enhances salt palatability in rats Behavioral Neuroscience, 1984, 98, 652-660.	0.6	231
54	Modulation of taste affect by hunger, caloric satiety, and sensory-specific satiety in the rat. Appetite, 1991, 16, 103-120.	1.8	229

4

#	Article	IF	CITATIONS
55	Ventral Pallidum Firing Codes Hedonic Reward: When a Bad Taste Turns Good. Journal of Neurophysiology, 2006, 96, 2399-2409.	0.9	227
56	Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nature Neuroscience, 2008, 11, 423-425.	7.1	225
57	Implementation of Action Sequences by a Neostriatal Site: A Lesion Mapping Study of Grooming Syntax. Journal of Neuroscience, 1996, 16, 3444-3458.	1.7	219
58	Fear and Feeding in the Nucleus Accumbens Shell: Rostrocaudal Segregation of GABA-Elicited Defensive Behavior Versus Eating Behavior. Journal of Neuroscience, 2001, 21, 3261-3270.	1.7	219
59	The Mind of an Addicted Brain: Neural Sensitization of Wanting Versus Liking. Current Directions in Psychological Science, 1995, 4, 71-75.	2.8	205
60	Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus?. Brain Research, 1993, 624, 1-10.	1.1	193
61	Which Cue to "Want?―Central Amygdala Opioid Activation Enhances and Focuses Incentive Salience on a Prepotent Reward Cue. Journal of Neuroscience, 2009, 29, 6500-6513.	1.7	191
62	Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions Journal of Comparative and Physiological Psychology, 1981, 95, 363-382.	1.8	190
63	Dopamine or opioid stimulation of nucleus accumbens similarly amplify cueâ€triggered â€`wanting' for reward: entire core and medial shell mapped as substrates for <scp>PIT</scp> enhancement. European Journal of Neuroscience, 2013, 37, 1529-1540.	1.2	187
64	Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Experimental Brain Research, 1992, 90, 275-90.	0.7	183
65	Natural syntax rules control action sequence of rats. Behavioural Brain Research, 1987, 23, 59-68.	1.2	171
66	Optogenetic Excitation of Central Amygdala Amplifies and Narrows Incentive Motivation to Pursue One Reward Above Another. Journal of Neuroscience, 2014, 34, 16567-16580.	1.7	170
67	Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity. Neuropsychopharmacology, 2015, 40, 2113-2123.	2.8	164
68	Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?. BMC Biology, 2006, 4, 8.	1.7	162
69	Mesolimbic Dopamine in Desire and Dread: Enabling Motivation to Be Generated by Localized Glutamate Disruptions in Nucleus Accumbens. Journal of Neuroscience, 2008, 28, 7184-7192.	1.7	159
70	Evolving Concepts of Emotion and Motivation. Frontiers in Psychology, 2018, 9, 1647.	1.1	159
71	Mapping brain circuits of reward and motivation: In the footsteps of Ann Kelley. Neuroscience and Biobehavioral Reviews, 2013, 37, 1919-1931.	2.9	152
72	Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9125-E9134.	3.3	152

#	Article	IF	CITATIONS
73	Building a neuroscience of pleasure and well-being. Psychology of Well-being, 2011, 1, 3.	2.3	150
74	What and when to "want� Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology, 2012, 221, 407-426.	1.5	150
75	†Liking' and †wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiology and Behavior, 2020, 227, 113152.	1.0	147
76	An Orexin Hotspot in Ventral Pallidum Amplifies Hedonic â€~Liking' for Sweetness. Neuropsychopharmacology, 2013, 38, 1655-1664.	2.8	145
77	Glutamate motivational ensembles in nucleus accumbens: rostrocaudal shell gradients of fear and feeding. European Journal of Neuroscience, 2003, 17, 2187-2200.	1.2	139
78	Alternating ingestive and aversive consummatory responses suggest a two-dimensional analysis of palatability in rats Behavioral Neuroscience, 1983, 97, 563-573.	0.6	138
79	Ventral Pallidal Representation of Pavlovian Cues and Reward: Population and Rate Codes. Journal of Neuroscience, 2004, 24, 1058-1069.	1.7	137
80	Wanting and Liking: Observations from the Neuroscience and Psychology Laboratory. Inquiry (United) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
81	The Affective Core of Emotion: Linking Pleasure, Subjective Well-Being, and Optimal Metastability in the Brain. Emotion Review, 2017, 9, 191-199.	2.1	134
82	Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 2013, 238, 53-61.	1.2	131
83	Special Review: Decision Utility, The Brain, and Pursuit of Hedonic Goals. Social Cognition, 2008, 26, 621-646.	0.5	123
84	Pimozide Does Not Shift Palatability: Separation of Anhedonia from Sensorimotor Suppression by Taste Reactivity. Pharmacology Biochemistry and Behavior, 1997, 58, 801-811.	1.3	121
85	Advances in the neurobiological bases for food â€~liking' versus â€~wanting'. Physiology and Behavior, 2014, 136, 22-30.	1.0	121
86	Reward learning: Reinforcement, incentives, and expectations. Psychology of Learning and Motivation - Advances in Research and Theory, 2000, 40, 223-278.	0.5	120
87	Benzodiazepines, appetite, and taste palatability. Neuroscience and Biobehavioral Reviews, 1995, 19, 121-131.	2.9	118
88	Which cue to â€~want'? Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking. Behavioural Brain Research, 2012, 230, 399-408.	1.2	118
89	Nucleus Accumbens Dopamine/Glutamate Interaction Switches Modes to Generate Desire versus Dread: D ₁ Alone for Appetitive Eating But D ₁ and D ₂ Together for Fear. Journal of Neuroscience, 2011, 31, 12866-12879.	1.7	117
90	Basal ganglia neural mechanisms of natural movement sequences. Canadian Journal of Physiology and Pharmacology, 2004, 82, 732-739.	0.7	115

#	Article	IF	CITATIONS
91	Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose â€~Liking' and Intake but Scopolamine in Caudal Shell Shifts â€~Liking' Toward â€~Disgust' and â€~Fear'. Neuropsychopharmac 2016, 41, 2101-2111.	coløgy,	113
92	Lesions of the central nucleus of the amygdala I: Effects on taste reactivity, taste aversion learning and sodium appetite. Behavioural Brain Research, 1993, 59, 11-17.	1.2	112
93	Affective valence in the brain: modules or modes?. Nature Reviews Neuroscience, 2019, 20, 225-234.	4.9	112
94	Morphine enhances hedonic taste palatability in rats. Pharmacology Biochemistry and Behavior, 1993, 46, 745-749.	1.3	111
95	The hedonic impact and intake of food are increased by midazolam microinjection in the parabrachial nucleus. Brain Research, 2000, 877, 288-297.	1.1	110
96	Current perspectives on incentive salience and applications to clinical disorders. Current Opinion in Behavioral Sciences, 2018, 22, 59-69.	2.0	109
97	Chlordiazepoxide directly enhances positive ingestive reactions in rats. Pharmacology Biochemistry and Behavior, 1986, 24, 217-221.	1.3	108
98	Comparative Fine Structure of Action: Rules of Form and Sequence in the Grooming Patterns of Six Rodent Species. Behaviour, 1990, 113, 21-56.	0.4	108
99	Dynamic Computation of Incentive Salience: "Wanting―What Was Never "Liked― Journal of Neuroscience, 2009, 29, 12220-12228.	1.7	107
100	Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 2014, 266, 119-130.	1.2	106
101	Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine. Journal of Neuroscience, 2017, 37, 8330-8348.	1.7	106
102	The functional neuroanatomy of pleasure and happiness. Discovery Medicine, 2010, 9, 579-87.	0.5	103
103	Sodium depletion enhances salt palatability in rats Behavioral Neuroscience, 1984, 98, 652-660.	0.6	102
104	Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues Behavioral Neuroscience, 2015, 129, 502-511.	0.6	100
105	Enkephalin Surges in Dorsal Neostriatum as a Signal to Eat. Current Biology, 2012, 22, 1918-1924.	1.8	98
106	A comparison of benzodiazepine, serotonin, and dopamine agents in the taste-reactivity paradigm. Pharmacology Biochemistry and Behavior, 1990, 37, 451-456.	1.3	96
107	Excessive disgust caused by brain lesions or temporary inactivations: mapping hotspots of the nucleus accumbens and ventral pallidum. European Journal of Neuroscience, 2014, 40, 3556-3572.	1.2	92
108	Contextual control of trigeminal sensorimotor function. Journal of Neuroscience, 1986, 6, 325-330.	1.7	91

#	Article	IF	CITATIONS
109	Super-stereotypy I: Enhancement of a complex movement sequence by systemic dopamine D1 agonists. Synapse, 2000, 37, 194-204.	0.6	88
110	Desire and Dread from the Nucleus Accumbens: Cortical Glutamate and Subcortical GABA Differentially Generate Motivation and Hedonic Impact in the Rat. PLoS ONE, 2010, 5, e11223.	1.1	88
111	Is Addiction a Brain Disease?. Neuroethics, 2017, 10, 29-33.	1.7	87
112	Progressive degradation of serial grooming chains by descending decerebration. Behavioural Brain Research, 1989, 33, 241-253.	1.2	85
113	Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence. PLoS ONE, 2018, 13, e0207694.	1.1	85
114	Isohedonic Tastes Support a Two-dimensional Hypothesis of Palatability. Appetite, 1984, 5, 221-231.	1.8	84
115	Neuronal Coding of Serial Order: Syntax of Grooming in the Neostriatum. Psychological Science, 1993, 4, 391-395.	1.8	83
116	Pleasantness of a Sweet Taste during Hunger and Satiety: Effects of Gender and "Sweet Tooth". Appetite, 1993, 21, 247-254.	1.8	79
117	The rise of affectivism. Nature Human Behaviour, 2021, 5, 816-820.	6.2	77
118	Action sequencing is impaired in D1A-deficient mutant mice. European Journal of Neuroscience, 1998, 10, 2426-2432.	1.2	75
119	What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus?. Behavioral Neuroscience, 1991, 105, 3-14.	0.6	75
120	Dopamine receptor modulation of repetitive grooming actions in the rat: Potential relevance for Tourette syndrome. Brain Research, 2010, 1322, 92-101.	1.1	73
121	Prefrontal Cortex Modulates Desire and Dread Generated by Nucleus Accumbens Glutamate Disruption. Biological Psychiatry, 2013, 73, 360-370.	0.7	70
122	Ventral pallidal coding of a learned taste aversion. Behavioural Brain Research, 2016, 300, 175-183.	1.2	67
123	Trigeminal-taste interaction in palatability processing. Science, 1985, 228, 747-750.	6.0	66
124	Addiction Between Compulsion and Choice. , 2013, , 239-268.		66
125	Super-stereotypy II: Enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse, 2000, 37, 205-215.	0.6	58
126	Irrational Wanting and Subrational Liking: How Rudimentary Motivational and Affective Processes Shape Preferences and Choices. Political Psychology, 2003, 24, 657-680.	2.2	56

#	Article	IF	CITATIONS
127	A Neurobehavioral Approach to Addiction: Implications for the Opioid Epidemic and the Psychology of Addiction. Psychological Science in the Public Interest: A Journal of the American Psychological Society, 2019, 20, 96-127.	6.7	53
128	Differential subjective and psychophysiological responses to socially and nonsocially generated emotional stimuli Emotion, 2006, 6, 150-155.	1.5	52
129	Food Addiction. , 2013, , 2833-2857.		52
130	Alternating ingestive and aversive consummatory responses suggest a two-dimensional analysis of palatability in rats Behavioral Neuroscience, 1983, 97, 563-573.	0.6	52
131	Brainstem systems mediate the enhancement of palatability by chlordiazepoxide. Brain Research, 1988, 447, 262-268.	1.1	51
132	Dorsolateral neostriatum contribution to incentive salience: opioid or dopamine stimulation makes one reward cue more motivationally attractive than another. European Journal of Neuroscience, 2016, 43, 1203-1218.	1.2	51
133	Incentive-sensitization and drug ?wanting?. Psychopharmacology, 2004, 171, 352-353.	1.5	47
134	Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain Research, 1996, 727, 22-30.	1.1	46
135	Food Intake After Diazepam, Morphine or Muscimol. Pharmacology Biochemistry and Behavior, 2000, 66, 429-434.	1.3	45
136	Deafferentation does not disrupt natural rules of action syntax. Behavioural Brain Research, 1987, 23, 69-76.	1.2	44
137	Sensitization of Incentive Salience and the Transition to Addiction. , 2020, , 23-37.		43
138	Disruption of natural grooming chains after striatopallidal lesions. Cognitive, Affective and Behavioral Neuroscience, 1987, 15, 336-342.	1.2	43
139	Control of fluid palatability by exteroceptive Pavlovian signals Journal of Experimental Psychology, 1986, 12, 143-152.	1.9	42
140	Incentive Salience and the Transition to Addiction. , 2013, , 391-399.		42
141	The central amygdala recruits mesocorticolimbic circuitry for pursuit of reward or pain. Nature Communications, 2020, 11, 2716.	5.8	42
142	Activating Corticotropin-Releasing Factor Systems in the Nucleus Accumbens, Amygdala, and Bed Nucleus of Stria Terminalis: Incentive Motivation or Aversive Motivation?. Biological Psychiatry, 2021, 89, 1162-1175.	0.7	41
143	The Joyful Mind. Scientific American, 2012, 307, 40-45.	1.0	40
144	Rats learn to like the taste of morphine Behavioral Neuroscience, 1985, 99, 290-300.	0.6	39

#	Article	IF	CITATIONS
145	The direct enhancement of positive palatability by chlordiazepoxide is antagonized by Ro 15-1788 and CGS 8216. Pharmacology Biochemistry and Behavior, 1987, 26, 709-714.	1.3	39
146	Substantia nigra pars reticulata neurons code initiation of a serial pattern: implications for natural action sequences and sequential disorders. European Journal of Neuroscience, 2002, 16, 1599-1608.	1.2	38
147	Metabotropic glutamate receptor blockade in nucleus accumbens shell shifts affective valence towards fear and disgust. European Journal of Neuroscience, 2011, 33, 736-747.	1.2	38
148	'Stressing' rodent self-grooming for neuroscience research. Nature Reviews Neuroscience, 2016, 17, 591-591.	4.9	38
149	Motivational-sensorimotor interaction controls aphagia and exaggerated treading after striatopallidal lesions Behavioral Neuroscience, 1990, 104, 778-795.	0.6	36
150	Incentive motivation: â€~̃wanting' roles of central amygdala circuitry. Behavioural Brain Research, 2021, 411, 113376.	1.2	36
151	Endogenous opioids are necessary for benzodiazepine palatability enhancement: Naltrexone blocks diazepam-induced increase of sucrose-†liking'. Pharmacology Biochemistry and Behavior, 2005, 81, 657-663.	1.3	35
152	Substantia nigra 6-OHDA lesions mimic striatopallidal disruption of syntactic grooming chains: A neural systems analysis of sequence control. Cognitive, Affective and Behavioral Neuroscience, 1989, 17, 377-385.	1.2	34
153	Nucleus accumbens <scp>GABA</scp> ergic inhibition generates intense eating and fear that resists environmental retuning and needs no local dopamine. European Journal of Neuroscience, 2013, 37, 1789-1802.	1.2	32
154	Conditioned taste aversion in rats for a threonine-deficient diet. Physiology and Behavior, 2000, 68, 423-429.	1.0	29
155	Endocannabinoid-Enhanced "Liking―in Nucleus Accumbens Shell Hedonic Hotspot Requires Endogenous Opioid Signals. Cannabis and Cannabinoid Research, 2018, 3, 166-170.	1.5	27
156	Positive affect: nature and brain bases of liking and wanting. Current Opinion in Behavioral Sciences, 2021, 39, 72-78.	2.0	27
157	Mapping of globus pallidus and ventral pallidum lesions that produce hyperkinetic treading. Brain Research, 1994, 668, 16-29.	1.1	26
158	Ontogeny of Action Syntax in Altricial and Precocial Rodents: Grooming Sequences of Rat and Guinea Pig Pups. Behaviour, 1996, 133, 1165-1195.	0.4	26
159	Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain Research, 1996, 727, 22-30.	1.1	25
160	From Experienced Utility to Decision Utility. , 2014, , 335-351.		25
161	Drug Addiction as Incentive Sensitization. , 2011, , 21-54.		25
162	The Neuroscience of Happiness and Pleasure. Social Research, 2010, 77, 659-678.	1.0	23

#	Article	IF	CITATIONS
163	Dopamine D1 activation shortens the duration of phases in stereotyped grooming sequences. Behavioural Processes, 2006, 71, 241-249.	0.5	22
164	The Hunger Games. Cell, 2015, 160, 805-806.	13.5	22
165	Do California ground squirrels (Spermophilus beecheyi) use ritualized syntactic cephalocaudal grooming as an agonistic signal?. Journal of Comparative Psychology (Washington, D C: 1983), 2000, 114, 281-290.	0.3	21
166	Brain Reward Systems for Food Incentives and Hedonics in Normal Appetite and Eating Disorders. , 2007, , 191-II.		20
167	Neuroscience of Reward, Motivation, and Drive. Advances in Motivation and Achievement: A Research Annual, 2016, , 23-35.	0.3	18
168	Rats learn to like the taste of morphine Behavioral Neuroscience, 1985, 99, 290-300.	0.6	18
169	Hypothalamic Cooling Elicits Eating: Differential Effects on Motivation and Pleasure. Psychological Science, 1991, 2, 184-189.	1.8	16
170	Deterministic versus probabilistic models of behaviour: taste-elicited actions in rats as a case study. Animal Behaviour, 1986, 34, 871-880.	0.8	15
171	Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. PLoS ONE, 2020, 15, e0224301.	1.1	15
172	Pleasure, Unfelt Affect, and Irrational Desire. , 2004, , 243-262.		14
173	Espresso Reward Learning, Hold the Dopamine: Theoretical Comment on Robinson et al. (2005) Behavioral Neuroscience, 2005, 119, 336-341.	0.6	14
174	Desire or Dread from Nucleus Accumbens Inhibitions: Reversed by Same-Site Optogenetic Excitations. Journal of Neuroscience, 2020, 40, 2737-2752.	1.7	13
175	Mapping excessive "disgust―in the brain: Ventral pallidum inactivation recruits distributed circuitry to make sweetness "disgusting― Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 141-159.	1.0	12
176	A triggered hyperkinesia induced in rats by lesions of the corpus striatum. Experimental Neurology, 1988, 99, 259-268.	2.0	11
177	Emotion, Consciousness, and Social Behavior. , 2011, , .		11
178	Neurocognition: The Food–Brain Connection. Advances in Nutrition, 2014, 5, 544-546.	2.9	11
179	Liking. Current Biology, 2021, 31, R1555-R1557.	1.8	10
180	Towards a Neuroscience of Well-Being: Implications of Insights from Pleasure Research. Happiness Studies Book Series, 2013, , 81-100.	0.1	9

#	Article	IF	CITATIONS
181	Computing motivation: Incentive salience boosts of drug or appetite states. Behavioral and Brain Sciences, 2008, 31, 440-441.	0.4	8
182	Addiction research and theory: a commentary on the <scp>Surgeon General's Report</scp> on alcohol, drugs, and health. Addiction Biology, 2018, 23, 3-5.	1.4	8
183	Decision Utility, Incentive Salience, and Cue-Triggered "Wanting". , 2009, 2009, 509-533.		8
184	Corticotropin releasing factor (CRF) systems: Promoting cocaine pursuit without distress via incentive motivation. PLoS ONE, 2022, 17, e0267345.	1.1	8
185	Incentive Salience in Addiction and Over-Consumption. , 2014, , 185-198.		6
186	Remembering Robert Zajonc: The Complete Psychologist. Emotion Review, 2010, 2, 348-352.	2.1	5
187	The Current Status of the Incentive Sensitization Theory of Addiction. , 2018, , 351-361.		5
188	Comment on Vandaele and Ahmed: Rethinking habits in addiction. Neuropsychopharmacology, 2021, 46, 687-688.	2.8	5
189	Haloperidol Decreases Hyperkinetic Paw Treading Induced by Globus Pallidus Lesions in the Rat. Experimental Neurology, 1997, 145, 288-294.	2.0	4
190	Basal Ganglia Neural Coding of Natural Action Sequences. Advances in Behavioral Biology, 2002, , 279-287.	0.2	4
191	Wanting vs Needing. , 2015, , 351-356.		4
192	The Neurobiology of Pleasure and Happiness. , 2011, , .		4
193	Compulsion and choice in addiction. , 2016, , 153-170.		3
194	Automatic Processes in Addiction: A Commentary. , 0, , 477-482.		3
195	Computational Models of Incentive-Sensitization in Addiction: Dynamic Limbic Transformation of Learning into Motivation. , 2012, , 189-203.		2
196	Coding of Behavioral Sequences in the Basal Ganglia. Advances in Behavioral Biology, 2002, , 53-66.	0.2	2
197	Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus?. Brain Research, 1994, 642, 355.	1.1	1
198	Control versus causation of addiction. Behavioral and Brain Sciences, 1996, 19, 576-577.	0.4	1

#	Article	IF	CITATIONS
199	Contributions of Philip Teitelbaum to affective neuroscience. Behavioural Brain Research, 2012, 231, 396-403.	1.2	1
200	Incentive Motivation and Incentive Salience. , 2010, , 100-104.		1
201	Beyond Wise et al.: Neuroleptic-induced "anhedonia―in rats: Pimozide blocks reward quality of food. , 2017, , 190-200.		1
202	The pursuit of value: sensitization or tolerance?. Behavioral and Brain Sciences, 1996, 19, 594-595.	0.4	0
203	The Joyful Mind. Scientific American Mind, 2018, 27, 72-77.	0.0	0
204	Are We Designed to Be Happy?. , 2020, , 91-96.		0
205	Mapping causal generators of appetitive motivation-hedonic functions in frontal cortex. Neuropsychopharmacology, 2022, 47, 415-416.	2.8	0
206	Food "Liking―and "Wanting― , 2015, , 125-146.		0
207	Food Addiction. , 2016, , 3771-3796.		0
208	Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. , 2020, 15, e0224301.		0
209	Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. , 2020, 15, e0224301.		0
210	Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. , 2020, 15, e0224301.		0
211	Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. , 2020, 15, e0224301.		0