
MarÃ-a LujÃ;n Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	2.1	393
2	PLA Nano- and Microparticles for Drug Delivery: An Overview of the Methods of Preparation. Macromolecular Bioscience, 2007, 7, 767-783.	2.1	269
3	<i>Burkholderia cepacia</i> lipase: A versatile catalyst in synthesis reactions. Biotechnology and Bioengineering, 2018, 115, 6-24.	1.7	83
4	The effect of pH in the adsorption of Alizarin and Eriochrome Blue Black R onto iron oxides. Journal of Hazardous Materials, 2009, 168, 168-178.	6.5	63
5	Investigation of the causes of deactivation–degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol–aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 95-107.	1.8	61
6	Preparation of iron oxide nanoparticles stabilized with biomolecules: Experimental and mechanistic issues. Acta Biomaterialia, 2013, 9, 4754-4762.	4.1	61
7	Enantioselective esterification of ibuprofen with ethanol as reactant and solvent catalyzed by immobilized lipase: experimental and molecular modeling aspects. Journal of Chemical Technology and Biotechnology, 2009, 84, 1461-1473.	1.6	56
8	Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes. Frontiers of Environmental Science and Engineering, 2015, 9, 746-769.	3.3	51
9	Eriochrome Blue Black R and Fluorescein degradation by hydrogen peroxide oxidation with horseradish peroxidase and hematin as biocatalysts. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 63-71.	1.8	42
10	Adsorption of Alizarin, Eriochrome Blue Black R, and Fluorescein Using Different Iron Oxides as Adsorbents. Industrial & Engineering Chemistry Research, 2007, 46, 8255-8263.	1.8	41
11	Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme and Microbial Technology, 2007, 41, 35-43.	1.6	40
12	FTIR-ATR characterization of free Rhizomucor meihei lipase (RML), Lipozyme RM IM and chitosan-immobilized RML. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 220-228.	1.8	40
13	Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents: a comparative study. Quimica Nova, 2009, 32, 1239-1244.	0.3	39
14	Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity. AMB Express, 2013, 3, 25.	1.4	37
15	Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enzyme and Microbial Technology, 2017, 97, 97-103.	1.6	34
16	Strengthening of polypropylene–glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1915-1923.	3.8	33
17	Hydrogenation of edible oil over Pd catalysts: A combined theoretical and experimental study. Journal of Molecular Catalysis A, 2005, 237, 67-79.	4.8	29
18	A review of magnetic separation of whey proteins and potential application to whey proteins recovery, isolation and utilization. Journal of Food Engineering, 2019, 246, 7-15.	2.7	28

MarÃa LujÃin Ferreira

#	Article	IF	CITATIONS
19	Study of the reaction mechanism of the transesterification of triglycerides catalyzed by zinc carboxylates. Journal of Molecular Catalysis A, 2013, 377, 29-41.	4.8	27
20	Potential applications of spent adsorbents and catalysts: Re-valorization of waste. Science of the Total Environment, 2022, 823, 153370.	3.9	25
21	Removal of Fluorescein using different iron oxides as adsorbents: Effect of pH. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 636-643.	2.0	24
22	The Co-adsorption of tetramethylpiperidine and TiCl4 on β-MgCl2. A theoretical study of a Ziegler-Natta pre-catalyst. Journal of Molecular Catalysis A, 1997, 122, 25-37.	4.8	23
23	PLGA based drug delivery systems (DDS) for the sustained release of insulin: insight into the protein/polyester interactions and the insulin release behavior. Journal of Chemical Technology and Biotechnology, 2010, 85, 1588-1596.	1.6	23
24	Enzymatic synthesis of 1,3-dicaproyglycerol by esterification of glycerol with capric acid in an organic solvent system. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 7-18.	1.8	23
25	Fabrication of ferrogels using different magnetic nanoparticles and their performance on protein adsorption. Polymer International, 2014, 63, 258-265.	1.6	23
26	An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435. Journal of Biotechnology, 2016, 220, 92-99.	1.9	22
27	Development of a magnetic biocatalyst useful for the synthesis of ethyloleate. Bioprocess and Biosystems Engineering, 2014, 37, 585-591.	1.7	21
28	Esterification of R/S-ketoprofen with 2-propanol as reactant and solvent catalyzed by Novozym® 435 at selected conditions. Journal of Molecular Catalysis B: Enzymatic, 2012, 83, 108-119.	1.8	20
29	Synthesis of Polycaprolactone Using Free/Supported Enzymatic and Non-Enzymatic Catalysts. Macromolecular Rapid Communications, 2004, 25, 2025-2028.	2.0	18
30	Towards a green enantiomeric esterification of R/S-ketoprofen: A theoretical and experimental investigation. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 52-61.	1.8	18
31	Partial hydrogenation of sunflower oil: Use of edible modifiers of the cis/trans-selectivity. Journal of Molecular Catalysis A, 2009, 299, 88-92.	4.8	17
32	Lipase-catalyzed acidolysis of tripalmitin with capric acid in organic solvent medium: Analysis of the effect of experimental conditions through factorial design and analysis of multiple responses. Enzyme and Microbial Technology, 2010, 46, 419-429.	1.6	17
33	Experimental design and MM2–PM6 molecular modelling of hematin as a peroxidase-like catalyst in Alizarin Red S degradation. Journal of Molecular Catalysis A, 2012, 355, 44-60.	4.8	17
34	Immobilization of CALB on lysine-modified magnetic nanoparticles: influence of the immobilization protocol. Bioprocess and Biosystems Engineering, 2018, 41, 171-184.	1.7	17
35	Influence of the nature of the support on the catalytic performance of CALB: experimental and theoretical evidence. Catalysis Science and Technology, 2018, 8, 3513-3526.	2.1	17
36	Efficiency of enzymatic and non-enzymatic catalysts in the synthesis of insoluble polyphenol and conductive polyaniline in water. Biochemical Engineering Journal, 2006, 29, 191-203.	1.8	16

MarÃa LujÃin Ferreira

#	Article	IF	CITATIONS
37	Copolymerization of polypropylene and functionalized linear ?-olefin onto glass fibers. Journal of Applied Polymer Science, 2001, 81, 1266-1276.	1.3	14
38	UV/Visible Study of the Reaction of Oxidoreductases and Model Compounds with H2O2. Macromolecular Bioscience, 2003, 3, 179-188.	2.1	14
39	Evaluation of hematin-catalyzed Orange II degradation as a potential alternative to horseradish peroxidase. International Biodeterioration and Biodegradation, 2012, 73, 60-72.	1.9	14
40	Lipase-catalyzed copolymerization of lactic and glycolic acid with potential as drug delivery devices. Bioprocess and Biosystems Engineering, 2008, 31, 499-508.	1.7	13
41	Kinetic modelling of the hematin catalysed decolourization of Orange II solutions. Chemical Engineering Science, 2017, 161, 127-137.	1.9	13
42	Optimization of the Enzymatic Synthesis of Pentyl Oleate with Lipase Immobilized onto Novel Structured Support. Fermentation, 2019, 5, 48.	1.4	13
43	Molecular recognition of an acyl–enzyme intermediate on the lipase B from Candida antarctica. Catalysis Science and Technology, 2017, 7, 1953-1964.	2.1	12
44	Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen, 2022, 11, e202200017.	0.9	12
45	Novel synthesis of polyethylene-poly(dimethylsiloxane) copolymers with a metallocene catalyst. Journal of Polymer Science Part A, 2004, 42, 2462-2473.	2.5	11
46	Ethylene and Propylene Polymerization Using In Situ Supported Me2Si(Ind)2ZrCl2 Catalyst: Experimental and Theoretical Study. Macromolecular Materials and Engineering, 2006, 291, 279-287.	1.7	11
47	Chemical grafting of metalloceneâ€catalyzed functional polypropylene copolymer on glass substrates through surface modification. Journal of Applied Polymer Science, 2008, 109, 2815-2822.	1.3	10
48	Chemical anchorage of polypropylene onto glass fibers: Effect on adhesion and mechanical properties of their composites. International Journal of Adhesion and Adhesives, 2013, 43, 26-31.	1.4	10
49	Magnetic solid-phase extraction: A nanotechnological strategy for cheese whey protein recovery. Journal of Food Engineering, 2019, 263, 380-387.	2.7	10
50	Challenges of dye removal treatments based on IONzymes: Beyond heterogeneous Fenton. Journal of Water Process Engineering, 2021, 41, 102065.	2.6	10
51	Unusual volumetric and hydration behavior of the catanionic system sodium undecenoate: sodecyltrimethylammonium bromide. Colloid and Polymer Science, 2005, 283, 1016-1024.	1.0	9
52	Screening of Lipases with Unusual High Activity in the <i>sn</i> -2 Esterification of 1,3-Dicaprin under Mild Operating Conditions. Journal of Agricultural and Food Chemistry, 2017, 65, 5010-5017.	2.4	9
53	Valorization of Glycerol through the Enzymatic Synthesis of Acylglycerides with High Nutritional Value. Catalysts, 2020, 10, 116.	1.6	9
54	Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12. Journal of Biotechnology, 2021, 342, 13-27.	1.9	9

MarÃa LujÃin Ferreira

#	Article	IF	CITATIONS
55	A Proposed Mechanism for Olefin Polymerization, 1. C2v, C2 and Cs Zirconocene Catalysts. Macromolecular Theory and Simulations, 2002, 11, 250.	0.6	8
56	A Proposed Mechanism for Olefin Polymerization, 2. EHMO and MM2 Study. Macromolecular Theory and Simulations, 2002, 11, 267.	0.6	8
57	The interaction between water vapor and chitosan II: Computational study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 315, 241-249.	2.3	8
58	About the role of typical spacer/crosslinker on the design of efficient magnetic biocatalysts based on nanosized magnetite. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 296-304.	1.8	8
59	Characterization and evaluation of supported <i>rac</i> â€dimethylsilylenebis(indenyl)zirconium dichloride on ethylene polymerization. Journal of Applied Polymer Science, 2009, 112, 563-571.	1.3	7
60	Supported biocatalysts for Alizarin and Eriochrome Blue Black R degradation using hydrogen peroxide. Chemical Engineering Journal, 2012, 204-206, 65-71.	6.6	7
61	Comparative characterization of MgCl2/ethyl benzoate/TiCl4 and MgCl2/2,2,6,6 tetramethylpiperidine/TiCl4 Ziegler-Natta precatalysts. Journal of Polymer Science Part A, 1994, 32, 1137-1147.	2.5	6
62	Explanation of Experimental Results of Mixed Micelles of Homologous Surfactants through a Mm2 Bidimensional Modeling. Journal of Physical Chemistry B, 2010, 114, 14924-14933.	1.2	6
63	Molecular modeling of the mechanism of ethyl fatty ester synthesis catalyzed by lipases. Effects of structural water and ethanol initial co-adsorption with the fatty acid. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 289-295.	1.8	4
64	A Simple Molecular Model to Study the Substrate Diffusion into the Active Site of a Lipase-Catalyzed Esterification of Ibuprofen and Ketoprofen with Glycerol. Topics in Catalysis, 2022, 65, 944-956.	1.3	4
65	Separation of Acylglycerides Obtained by Enzymatic Esterification Using Solvent Extraction. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 261-270.	0.8	3
66	Modified chitosan as an economical support for hematin: application in the decolorization of anthraquinone and azo dyes. Journal of Chemical Technology and Biotechnology, 2015, 90, 1665-1676.	1.6	3
67	Self Diffusivity of n-Dodecane and Benzothiophene in ZSM-5 Zeolites. Its Significance for a New Catalytic Light Diesel Desulfurization Process. International Journal of Chemical Reactor Engineering, 2016, 14, 737-748.	0.6	3
68	Low-cost nanoparticulate oxidation catalysts for the removal of azo and anthraquinic dyes. Journal of Environmental Health Science & Engineering, 2021, 19, 721-731.	1.4	2
69	Influencia del Recubrimiento de las Fibras de Vidrio sobre la Efectividad de la Reacción de Copolimerización Propileno-Vidrio. Informacion Tecnologica (discontinued), 2011, 22, 77-82.	0.1	1
70	Simple and economical <scp>CALB</scp> /polyethylene/aluminum biocatalyst for fatty acid esterification. Polymers for Advanced Technologies, 2018, 29, 1002-1006.	1.6	1
71	Application of metal complexes as biomimetic catalysts on glycerol oxidation. Molecular Catalysis, 2020, 481, 110236.	1.0	1
72	What Problems Arise When Enzymatic Synthesis of Structured Di- and Triglycerides Is Performed?. Springer Briefs in Molecular Science, 2017, , 35-54.	0.1	1

#	Article	IF	CITATIONS
73	Industrial Perspectives Which Have to Be Taken into Account to Scale from the Laboratory to Industry?. Springer Briefs in Molecular Science, 2017, , 63-72.	0.1	0
74	Literature Review: What Has Been Explored About Enzymatic Synthesis of ST and SD?. Springer Briefs in Molecular Science, 2017, , 17-34.	0.1	0