Lorena Norambuena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282250/publications.pdf

Version: 2024-02-01

34 papers

1,085 citations

16 h-index 32 g-index

34 all docs

34 docs citations

times ranked

34

1440 citing authors

#	Article	IF	CITATIONS
1	The Exocytosis Associated SNAP25-Type Protein, SISNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato. Plants, 2021, 10, 1322.	3.5	3
2	PI4KIII <i>\hat{I}^2</i> Activity Regulates Lateral Root Formation Driven by Endocytic Trafficking to the Vacuole. Plant Physiology, 2019, 181, 112-126.	4.8	11
3	Identification of a type II cystatin in Fragaria chiloensis: A proteinase inhibitor differentially regulated during achene development and in response to biotic stress-related stimuli. Plant Physiology and Biochemistry, 2018, 129, 158-167.	5 . 8	9
4	Chemical Genomics Translatability from Unicellular to Multicellular Models. Methods in Molecular Biology, 2018, 1795, 189-201.	0.9	1
5	The Use of Drugs in the Study of Vacuole Morphology and Trafficking to the Vacuole in Arabidopsis thaliana. Methods in Molecular Biology, 2018, 1789, 143-154.	0.9	2
6	Chemical Genetic Dissection of Membrane Trafficking. Annual Review of Plant Biology, 2017, 68, 197-224.	18.7	16
7	Synthesis, characterization, spectroscopic properties and DFT study of a new pyridazinone family. Journal of Molecular Structure, 2017, 1148, 162-169.	3.6	7
8	Involvement of SchRabGDI1 from Solanum chilense in endocytic trafficking and tolerance to salt stress. Plant Science, 2017, 263, 1-11.	3 . 6	17
9	PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science, 2017, 131, .	2.0	29
10	FcLDP1, a Gene Encoding a Late Embryogenesis Abundant (LEA) Domain Protein, Responds to Brassinosteroids and Abscisic Acid during the Development of Fruits in Fragaria chiloensis. Frontiers in Plant Science, 2016, 7, 788.	3.6	7
11	Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. Plant Science, 2016, 250, 10-19.	3.6	28
12	High throughput selection of novel plant growth regulators: Assessing the translatability of small bioactive molecules from Arabidopsis to crops. Plant Science, 2016, 245, 50-60.	3 . 6	22
13	Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae. Biological Research, 2015, 48, 39.	3.4	7
14	The Use of Multidrug Approach to Uncover New Players of the Endomembrane System Trafficking Machinery. Methods in Molecular Biology, 2014, 1056, 131-143.	0.9	1
15	Identification and characterisation of key genes involved in fruit ripening of the Chilean strawberry. New Biotechnology, 2014, 31, S182.	4.4	4
16	Regulation of protein trafficking: Posttranslational mechanisms and the unexplored transcriptional control. Plant Science, 2014, 225, 24-33.	3.6	13
17	Chemical Genomics: Characterizing Target Pathways for Bioactive Compounds Using the Endomembrane Trafficking Network. Methods in Molecular Biology, 2014, 1174, 317-328.	0.9	5
18	Chemical Genomics Screening for Biomodulators of Endomembrane System Trafficking. Methods in Molecular Biology, 2014, 1209, 251-264.	0.9	4

#	Article	IF	CITATIONS
19	In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics. Cell Calcium, 2012, 52, 397-404.	2.4	25
20	Endocytic Trafficking towards the Vacuole Plays a Key Role in the Auxin Receptor SCFTIR-Independent Mechanism of Lateral Root Formation in A. thaliana. Molecular Plant, 2012, 5, 1195-1209.	8.3	14
21	Sortin 1-Hypersensitive Mutants Link Vacuolar-Trafficking Defects and Flavonoid Metabolism in Arabidopsis Vegetative Tissues. Chemistry and Biology, 2011, 18, 187-197.	6.0	38
22	The Use of Chemical Genomics to Investigate Pathways Intersecting Auxin-Dependent Responses and Endomembrane Trafficking in Arabidopsis Thaliana. Methods in Molecular Biology, 2009, 495, 133-143.	0.9	11
23	Chemical Genomics Approaches in Plant Biology. Methods in Molecular Biology, 2009, 553, 345-354.	0.9	15
24	Identification of cellular pathways affected by Sortin2, a synthetic compound that affects protein targeting to the vacuole in Saccharomyces cerevisiae. BMC Chemical Biology, 2008, 8, 1.	1.6	23
25	AtHMA1 Is a Thapsigargin-sensitive Ca2+/Heavy Metal Pump. Journal of Biological Chemistry, 2008, 283, 9633-9641.	3.4	124
26	Complex formation regulates the glycosylation of the reversibly glycosylated polypeptide. Planta, 2007, 226, 335-345.	3.2	26
27	AtUTr1, a UDP-glucose/UDP-galactose Transporter from Arabidopsis thaliana, Is Located in the Endoplasmic Reticulum and Up-regulated by the Unfolded Protein Response*. Journal of Biological Chemistry, 2006, 281, 9145-9151.	3.4	45
28	AtUTr1 a UDPâ€galactose/UDPâ€glucose transporter from Arabidopsis thaliana is located at the endoplasmic reticulum and is involved in protein folding quality control. FASEB Journal, 2006, 20, A55.	0.5	0
29	AtUTr2 is an Arabidopsis thaliana nucleotide sugar transporter located in the Golgi apparatus capable of transporting UDP-galactose. Planta, 2005, 222, 521-529.	3.2	39
30	Transport of UDP-galactose in Plants. Journal of Biological Chemistry, 2002, 277, 32923-32929.	3.4	96
31	GDP-Fucose Uptake into the Golgi Apparatus during Xyloglucan Biosynthesis Requires the Activity of a Transporter-Like Protein Other Than the UDP-Glucose Transporter. Plant Physiology, 2000, 122, 867-878.	4.8	47
32	Xyloglucan Fucosyltransferase, an Enzyme Involved in Plant Cell Wall Biosynthesis. Science, 1999, 284, 1976-1979.	12.6	285
33	Topography and Function of Golgi Uridine-5[prime]-Diphosphatase from Pea Stems. Plant Physiology, 1997, 114, 99-107.	4.8	28
34	Evidence for a UDP-Glucose Transporter in Golgi Apparatus-Derived Vesicles from Pea and Its Possible Role in Polysaccharide Biosynthesis. Plant Physiology, 1996, 112, 1585-1594.	4.8	83