
Rebecca M Corrigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282190/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	c-di-AMP Is a New Second Messenger in Staphylococcus aureus with a Role in Controlling Cell Size and Envelope Stress. PLoS Pathogens, 2011, 7, e1002217.	4.7	398
2	Cyclic di-AMP: another second messenger enters the fray. Nature Reviews Microbiology, 2013, 11, 513-524.	28.6	338
3	The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology (United Kingdom), 2007, 153, 2435-2446.	1.8	299
4	agr function in clinical Staphylococcus aureus isolates. Microbiology (United Kingdom), 2008, 154, 2265-2274.	1.8	289
5	Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9084-9089.	7.1	242
6	The stringent response and physiological roles of (pp)pGpp in bacteria. Nature Reviews Microbiology, 2021, 19, 256-271.	28.6	208
7	Role of Surface Protein SasG in Biofilm Formation by <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2010, 192, 5663-5673.	2.2	190
8	Surface proteins that promote adherence of Staphylococcus aureusto human desquamated nasal epithelial cells. BMC Microbiology, 2009, 9, 22.	3.3	183
9	ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1710-9.	7.1	177
10	An improved tetracycline-inducible expression vector for Staphylococcus aureus. Plasmid, 2009, 61, 126-129.	1.4	147
11	Wall Teichoic Acid-Dependent Adsorption of Staphylococcal Siphovirus and Myovirus. Journal of Bacteriology, 2011, 193, 4006-4009.	2.2	136
12	The agr Radiation: an Early Event in the Evolution of Staphylococci. Journal of Bacteriology, 2005, 187, 5585-5594.	2.2	120
13	Cross-talk between Two Nucleotide-signaling Pathways in Staphylococcus aureus. Journal of Biological Chemistry, 2015, 290, 5826-5839.	3.4	113
14	The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in <i>Staphylococcus aureus</i> . Science Signaling, 2016, 9, ra81.	3.6	87
15	Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. Microbiology (United Kingdom), 2018, 164, 268-276.	1.8	87
16	Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Molecular Microbiology, 2011, 79, 566-583.	2.5	64
17	Differential localization of <scp>LTA</scp> synthesis proteins and their interaction with the cell division machinery in <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2014, 92, 273-286.	2.5	55
18	The immune evasion protein Sbi of <i>Staphylococcus aureus</i> occurs both extracellularly and anchored to the cell envelope by binding lipoteichoic acid. Molecular Microbiology, 2012, 83, 789-804.	2.5	46

REBECCA M CORRIGAN

#	Article	IF	CITATIONS
19	The (p)ppGpp-binding GTPase Era promotes rRNA processing and cold adaptation in Staphylococcus aureus. PLoS Genetics, 2019, 15, e1008346.	3.5	34
20	The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Cells, 2019, 8, 1313.	4.1	31
21	Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environmental Microbiology Reports, 2019, 11, 448-455.	2.4	31
22	The Stringent Response Inhibits 70S Ribosome Formation in <i>Staphylococcus aureus</i> by Impeding GTPase-Ribosome Interactions. MBio, 2021, 12, e0267921.	4.1	6