Benoît T Kornmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rewiring phospholipid biosynthesis reveals resilience to membrane perturbations and uncovers regulators of lipid homeostasis. EMBO Journal, 2022, 41, e109998.	3.5	21
2	Mitochondria transplantation between living cells. PLoS Biology, 2022, 20, e3001576.	2.6	28
3	SAturated Transposon Analysis in Yeast (SATAY) for Deep Functional Mapping of Yeast Genomes. Methods in Molecular Biology, 2022, 2477, 349-379.	0.4	1
4	METALIC reveals interorganelle lipid flux in live cells by enzymatic mass tagging. Nature Cell Biology, 2022, 24, 996-1004.	4.6	26
5	Csf1: A Putative Lipid Transport Protein Required for Homeoviscous Adaptation of the Lipidome. Contact (Thousand Oaks (Ventura County, Calif)), 2022, 5, 251525642211019.	0.4	1
6	Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast. PLoS Genetics, 2021, 17, e1009414.	1.5	32
7	A mechanism to PLAse the eye. Developmental Cell, 2021, 56, 1560-1561.	3.1	0
8	Editorial: Coupling and Uncoupling: Dynamic Control of Membrane Contacts. Frontiers in Cell and Developmental Biology, 2021, 9, 721546.	1.8	0
9	Leri: A web-server for identifying protein functional networks from evolutionary couplings. Computational and Structural Biotechnology Journal, 2021, 19, 3556-3563.	1.9	10
10	SUMO orchestrates multiple alternative DNA-protein crosslink repair pathways. Cell Reports, 2021, 37, 110034.	2.9	19
11	The Aspartic Protease Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast. Molecular Cell, 2020, 77, 1066-1079.e9.	4.5	58
12	ESCRT-III and ER–PM contacts maintain lipid homeostasis. Molecular Biology of the Cell, 2020, 31, 1302-1313.	0.9	15
13	The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes. Biological Chemistry, 2020, 401, 811-820.	1.2	17
14	Liquid but not contactless. Science, 2020, 367, 507-508.	6.0	5
15	ER–mitochondria contacts promote mitochondrial-derived compartment biogenesis. Journal of Cell Biology, 2020, 219, .	2.3	30
16	A Toolbox for Organelle Mechanobiology Research—Current Needs and Challenges. Micromachines, 2019, 10, 538.	1.4	11
17	Cytotoxicity of 1-deoxysphingolipid unraveled by genome-wide genetic screens and lipidomics in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2019, 30, 2814-2826.	0.9	14
18	Coming together to define membrane contactÂsites. Nature Communications, 2019, 10, 1287.	5.8	435

Benoît T Kornmann

#	Article	IF	CITATIONS
19	Miro-dependent mitochondrial pool of CENP-F and its farnesylated C-terminal domain are dispensable for normal development in mice. PLoS Genetics, 2019, 15, e1008050.	1.5	15
20	Lipid exchange at ER-mitochondria contact sites: a puzzle falling into place with quite a few pieces missing. Current Opinion in Cell Biology, 2019, 57, 71-76.	2.6	53
21	Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES. Journal of Cell Biology, 2018, 217, 959-974.	2.3	116
22	Organelle morphogenesis, targeting, and distribution. Molecular Biology of the Cell, 2018, 29, 692-693.	0.9	1
23	Mechanical forces on cellular organelles. Journal of Cell Science, 2018, 131, .	1.2	50
24	Vps13-Mcp1 interact at vacuole–mitochondria interfaces and bypass ER–mitochondria contact sites. Journal of Cell Biology, 2017, 216, 3219-3229.	2.3	132
25	Membrane contact sites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1435-1438.	1.9	4
26	Peptide–Membrane Interaction between Targeting and Lysis. ACS Chemical Biology, 2017, 12, 2254-2259.	1.6	12
27	CENP-F couples cargo to growing and shortening microtubule ends. Molecular Biology of the Cell, 2017, 28, 2400-2409.	0.9	32
28	Functional mapping of yeast genomes by saturated transposition. ELife, 2017, 6, .	2.8	126
29	Mechanical force induces mitochondrial fission. ELife, 2017, 6, .	2.8	125
30	Eighth International Chorea-Acanthocytosis Symposium: Summary of Workshop Discussion and Action Points. Tremor and Other Hyperkinetic Movements, 2017, 7, 428.	1.1	2
31	Dynamics of the mitochondrial network during mitosis. Biochemical Society Transactions, 2016, 44, 510-516.	1.6	59
32	High resolution microscopy reveals an unusual architecture of the <i>Plasmodium berghei</i> endoplasmic reticulum. Molecular Microbiology, 2016, 102, 775-791.	1.2	27
33	ER–mitochondria contact sites in yeast: beyond the myths of ERMES. Current Opinion in Cell Biology, 2015, 35, 7-12.	2.6	108
34	Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nature Communications, 2015, 6, 8015.	5.8	84
35	ER–mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. Journal of Cell Biology, 2015, 210, 883-890.	2.3	203
36	Quality control in mitochondria: use it, break it, fix it, trash it. F1000prime Reports, 2014, 6, 15.	5.9	24

Benoît T Kornmann

#	Article	IF	CITATIONS
37	The molecular hug between the ER and the mitochondria. Current Opinion in Cell Biology, 2013, 25, 443-448.	2.6	127
38	Organization and function of membrane contact sites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2526-2541.	1.9	399
39	The ERMES complex and ER–mitochondria connections. Biochemical Society Transactions, 2012, 40, 445-450.	1.6	70
40	The conserved GTPase Gem1 regulates endoplasmic reticulum–mitochondria connections. Proceedings of the United States of America, 2011, 108, 14151-14156.	3.3	312
41	ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. Journal of Cell Science, 2010, 123, 1389-1393.	1.2	178
42	REV-ERBα Participates in Circadian SREBP Signaling and Bile Acid Homeostasis. PLoS Biology, 2009, 7, e1000181.	2.6	368
43	An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen. Science, 2009, 325, 477-481.	6.0	1,129
44	System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock. PLoS Biology, 2007, 5, e34.	2.6	584
45	Regulation of Circadian Gene Expression in Liver by Systemic Signals and Hepatocyte Oscillators. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 319-330.	2.0	84
46	Circadian Gene Expression in Cultured Cells. Methods in Enzymology, 2005, 393, 543-557.	0.4	74
47	Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes and Development, 2005, 19, 1199-1210.	2.7	75
48	Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes and Development, 2000, 14, 2950-2961.	2.7	1,955
49	SUMO Orchestrates Multiple Alternative DNA-Protein Crosslink Repair Pathways. SSRN Electronic Journal, 0, , .	0.4	1