Mohammad Yousefi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5282039/publications.pdf Version: 2024-02-01

		331670	414414
33	1,315	21	32
papers	citations	h-index	g-index
22	22	22	050
33	33	33	858
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PVC-Based 1,3,5-Trithiane Sensor for Cerium(III) Ions. Analytical Chemistry, 2000, 72, 2391-2394.	6.5	149
2	A Schiff Base Complex of Zn(II) as a Neutral Carrier for Highly Selective PVC Membrane Sensors for the Sulfate Ion. Analytical Chemistry, 2001, 73, 2869-2874.	6.5	123
3	Lanthanum(III) PVC Membrane Electrodes Based on 1,3,5-Trithiacyclohexane. Analytical Chemistry, 2002, 74, 5538-5543.	6.5	100
4	Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a cadmium-Schiff's base complex. Fresenius' Journal of Analytical Chemistry, 2001, 370, 1091-1095.	1.5	90
5	Highly selective and sensitive copper(II) membrane coated graphite electrode based on a recently synthesized Schiff's base. Analytica Chimica Acta, 2001, 440, 81-87.	5.4	88
6	Highly Selective Iodide Membrane Electrode Based on a Cerium Salen. Analytical Sciences, 2002, 18, 289-292.	1.6	76
7	PVC-BASED 1,3,5-TRITHIANE COATED GRAPHITE ELECTRODE FOR DETERMINATION OF CERIUM(III) IONS. Analytical Letters, 2001, 34, 2249-2261.	1.8	72
8	Development of a new fluorimetric bulk optode membrane based on 2,5-thiophenylbis(5-tert-butyl-1,3-benzexazole) for nickel(II) ions. Analytica Chimica Acta, 2004, 501, 55-60.	5.4	71
9	The Synthesis of a New Thiophene-Derivative Schiff's Base and Its Use in Preparation of Copper-Ion Selective Electrodes. Electroanalysis, 2001, 13, 1513-1517.	2.9	62
10	Determination of SCN- in Urine and Saliva of Smokers and Non-Smokers by SCNSelective Polymeric Membrane Containing a Nickel(II)-Azamacrocycle Complex Coated on a Graphite Electrode Analytical Sciences, 2002, 18, 887-892.	1.6	47
11	Perchlorate-selective membrane sensors based on two nickel-hexaazamacrocycle complexes. Sensors and Actuators B: Chemical, 2007, 120, 494-499.	7.8	43
12	Highly selective sulfate PVC-membrane electrode based on 2,5-diphenyl-1,2,4,5-tetraaza-bicyclo[2.2.1]heptane as a neutral carrier. Sensors and Actuators B: Chemical, 2002, 82, 105-110.	7.8	42
13	Novel Liquid Membrane Electrode for Selective Determination of Monohydrogenphosphate. Electroanalysis, 2003, 15, 139-144.	2.9	40
14	Highly Selective and Sensitive Perchlorate Sensors Based on Some Recently Synthesized Ni(II)-Hexaazacyclotetradecane Complexes. Electroanalysis, 2003, 15, 1476-1480.	2.9	35
15	Nanocrystalline graphite-like pyrolytic carbon film electrode for electrochemical sensing of hydrazine. Sensors and Actuators B: Chemical, 2011, 160, 121-128.	7.8	33
16	Novel triiodide ion-selective polymeric membrane sensor based on mercury-salen. Sensors and Actuators B: Chemical, 2005, 105, 127-131.	7.8	30
17	Determination of Trace Amounts of Cr(III) in Presence of Cr(VI) by a Novel Potentiometric Membrane Sensor Based on a New Tridentate S,N,O Schiff's Base. Analytical Letters, 2003, 36, 2735-2747.	1.8	29
18	A SELECTIVE MEMBRANE ELECTRODE FOR THIOCYANATE ION BASED ON A COPPER-1,8-DIMETHYL-1,3,6,8,10,13-AZACYCLOTETRADECANE COMPLEX AS IONOPHORE. Analytical Letters, 2001, 34, 2621-2632.	1.8	27

#	Article	lF	CITATIONS
19	Synthesis of a New Oxime and Its Application to the Construction of a Highly Selective and Sensitive Co(II) PVC-Based Membrane Sensor. Analytical Sciences, 2004, 20, 531-535.	1.6	23
20	Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM). Ionics, 2015, 21, 1945-1957.	2.4	23
21	Synthesis, characterization and assessment of poly(urethane-co-pyrrole)s derived from castor oil as anticorrosion coatings for stainless steel. Progress in Organic Coatings, 2013, 76, 1454-1464.	3.9	21
22	Novel Potentiometric Strontium Membrane Sensor Based on Dibenzo-30-crown-10. Analytical Letters, 2003, 36, 2123-2137.	1.8	20
23	Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications. Nanotechnology, 2012, 23, 045102.	2.6	15
24	SEPARATION AND PRE-CONCENTRATION OF TRACE AMOUNTS OF CERIUM(III) ON OCTADECYL SILICA MEMBRANE DISCS MODIFIED WITH 1,3,5-TRITHIACYCLOHEXANE AND ITS SPECTROPHOTOMETRIC DETERMINATION BY ARSENAZO(III). Separation Science and Technology, 2002, 37, 3525-3534.	2.5	14
25	Activity enhancement of Li/MgO catalysts by lithium chloride as a lithium precursor for the oxidative coupling of methane. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 373-385.	1.7	9
26	Influence of CaO–ZnO supplementation as a secondary catalytic bed on the oxidative coupling of methane. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 227-240.	1.7	9
27	Low-temperature, chemical vapor deposition of thin-layer pyrolytic carbon coatings derived from camphor as a green precursor. Journal of Materials Science, 2018, 53, 959-976.	3.7	8
28	Application of nanocrystalline graphite-like pyrolytic carbon film electrode for voltammetric sensing of lead. Journal of Applied Electrochemistry, 2012, 42, 179-187.	2.9	6
29	Nanocrystalline graphite-like pyrolytic carbon films as electrodes for electrochemical sensing application. Journal of Electroanalytical Chemistry, 2012, 681, 114-120.	3.8	5
30	Improvement of the mechanical and oxidation resistance of pyrolytic carbon coatings by co-deposition synthesis of pyrolytic carbon-silicon carbide nanocomposite. Thin Solid Films, 2020, 713, 138320.	1.8	3
31	Single and Multi-Channel Reactor for Oxidative Coupling of Methane. International Journal of Chemical Reactor Engineering, 2014, 12, 181-189.	1.1	1
32	The effect of pyrolysis temperature, H2 concentration, and residence time on the oxidation temperature and wear resistance of pyrolytic carbon–silicon carbide (PyC–SiC) composites. Journal of the Iranian Chemical Society, 2021, 18, 3357.	2.2	1
33	Synthesis of Pyrolytic Carbon from Polyethylene Terephthalate on Graphite Substrate. , 2020, , 533-536.		0