List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5281994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants, 2022, 11, 765.	5.1	18
2	Nitro-Oleic Acid-Mediated Nitroalkylation Modulates the Antioxidant Function of Cytosolic Peroxiredoxin Tsa1 during Heat Stress in Saccharomyces cerevisiae. Antioxidants, 2022, 11, 972.	5.1	3
3	Single chain variable fragment fused to maltose binding protein: a modular nanocarrier platform for the targeted delivery of antitumorals. Biomaterials Science, 2021, 9, 1728-1738.	5.4	3
4	Poly(ethylene-imine)-Functionalized Magnetite Nanoparticles Derivatized with Folic Acid: Heating and Targeting Properties. Polymers, 2021, 13, 1599.	4.5	8
5	Amphiphilic-like carbon dots as antitumoral drug vehicles and phototherapeutical agents. Materials Chemistry Frontiers, 2021, 5, 8151-8160.	5.9	6
6	Plant catalases as NO and H2S targets. Redox Biology, 2020, 34, 101525.	9.0	125
7	Carbon dots-inspired fluorescent cyclodextrins: competitive supramolecular "off–on―(bio)sensors. Nanoscale, 2020, 12, 9178-9185.	5.6	6
8	Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants, 2019, 8, 448.	5.1	19
9	Acid anhydride coated carbon nanodots: activated platforms for engineering clicked (bio)nanoconstructs. Nanoscale, 2019, 11, 7850-7856.	5.6	12
10	Biological Evaluation and Docking Studies of Synthetic Oleanane-type Triterpenoids. ACS Omega, 2018, 3, 11455-11468.	3.5	10
11	Endogenous hydrogen sulfide (H2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO. Nitric Oxide - Biology and Chemistry, 2018, 81, 36-45.	2.7	92
12	Self-adjuvanting C18 lipid vinil sulfone-PP2A vaccine: study of the induced immunomodulation against <i>Trichuris muris</i> infection. Open Biology, 2017, 7, 170031.	3.6	12
13	Catalytic Materials Based on Surface Coating with Poly(ethyleneimine)‣tabilized Gold Nanoparticles. ChemCatChem, 2017, 9, 3965-3973.	3.7	14
14	An Expeditious Route to an HO-4 Free d-GalNAc Building Block from d-GlcNAc. , 2017, , 263-270.		0
15	Functionalized immunostimulating complexes with protein A via lipid vinyl sulfones to deliver cancer drugs to trastuzumab-resistant HER2-overexpressing breast cancer cells. International Journal of Nanomedicine, 2016, Volume 11, 4777-4785.	6.7	6
16	Response to Wilson et al. Comments on Lopez-Jaramillo et al. DivinylSulfone Cross-Linked Cyclodextrin-Based Polymeric Materials: Synthesis and Applications as Sorbents and Encapsulating Agents. Molecules, 2015, 20, 3565–3581 Molecules, 2016, 21, 98.	3.8	0
17	Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides. PLoS ONE, 2016, 11, e0145615.	2.5	17
18	Vinyl Sulfonates: A Click Function for Couplingâ€andâ€Decoupling Chemistry and their Applications. Advanced Synthesis and Catalysis, 2016, 358, 3394-3413.	4.3	12

#	Article	IF	CITATIONS
19	Polyethyleneimine oated Gold Nanoparticles: Straightforward Preparation of Efficient DNA Delivery Nanocarriers. Chemistry - an Asian Journal, 2016, 11, 3365-3375.	3.3	15
20	Polyelectrolyte Complexes of Low Molecular Weight PEI and Citric Acid as Efficient and Nontoxic Vectors for in Vitro and in Vivo Gene Delivery. Bioconjugate Chemistry, 2016, 27, 549-561.	3.6	36
21	Divinyl Sulfone Cross-Linked Cyclodextrin-Based Polymeric Materials: Synthesis and Applications as Sorbents and Encapsulating Agents. Molecules, 2015, 20, 3565-3581.	3.8	40
22	In Vitro and in Vivo Evaluation of Novel Cross-Linked Saccharide Based Polymers as Bile Acid Sequestrants. Molecules, 2015, 20, 3716-3729.	3.8	12
23	Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and <i>S</i> -nitrosylation. Journal of Experimental Botany, 2015, 66, 5983-5996.	4.8	153
24	Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and <i>S</i> -nitrosylation. Journal of Experimental Botany, 2014, 65, 527-538.	4.8	294
25	Masked Thiol Sugars: Chemical Behavior and Synthetic Applications of <i>S</i> â€Glycopyranosylâ€ <i>N</i> â€monoalkyl Dithiocarbamates. Chemistry - an Asian Journal, 2014, 9, 620-631.	3.3	7
26	Monovinyl Sulfone β yclodextrin. A Flexible Drug Carrier System. ChemMedChem, 2014, 9, 383-389.	3.2	19
27	Engineered Glycated Amino Dendritic Polymers as Specific Nonviral Gene Delivery Vectors Targeting the Receptor for Advanced Glycation End Products. Bioconjugate Chemistry, 2014, 25, 1151-1161.	3.6	12
28	Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione. BMC Plant Biology, 2013, 13, 61.	3.6	39
29	Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4981-4989.	2.4	62
30	Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (\hat{l}^2 -CA) activity under high temperature stress. Nitric Oxide - Biology and Chemistry, 2013, 29, 30-33.	2.7	80
31	Vinyl Sulfone Functionalization: A Feasible Approach for the Study of the Lectin–Carbohydrate Interactions. Bioconjugate Chemistry, 2012, 23, 846-855.	3.6	43
32	Magnetic Nanoparticles-Templated Assembly of Protein Subunits: A New Platform for Carbohydrate-Based MRI Nanoprobes. Journal of the American Chemical Society, 2011, 133, 4889-4895.	13.7	79
33	High temperature triggers the metabolism of <i>S</i> â€nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin–NADP reductase by tyrosine nitration. Plant, Cell and Environment, 2011, 34, 1803-1818.	5.7	145
34	Nonâ€Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis and Catalysis, 2010, 352, 3306-3320.	4.3	80
35	Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin. Journal of Experimental Botany, 2010, 61, 1509-1521.	4.8	50
36	Vinyl sulfone functionalized silica: a "ready to use―pre-activated material for immobilization of biomolecules. Journal of Materials Chemistry, 2010, 20, 7189.	6.7	54

#	Article	IF	CITATIONS
37	Vinyl Sulfone Bifunctional Tag Reagents for Single-Point Modification of Proteins. Journal of Organic Chemistry, 2010, 75, 4039-4047.	3.2	52
38	Evidence of non-functional redundancy between two pea h-type thioredoxins by specificity and stability studies. Journal of Plant Physiology, 2010, 167, 423-429.	3.5	10
39	Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Organic and Biomolecular Chemistry, 2010, 8, 667-675.	2.8	158
40	Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. Journal of Experimental Botany, 2009, 60, 4221-4234.	4.8	180
41	Synthesis of Calixarene-Based Cavitands and Nanotubes by Click Chemistry. Journal of Organic Chemistry, 2008, 73, 7768-7771.	3.2	70
42	Improvement of the quality of lumazine synthase crystals by protein engineering. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 625-628.	0.7	3
43	Synthesis of Molecular Nanocages by Click Chemistry. Journal of Organic Chemistry, 2008, 73, 7772-7774.	3.2	30
44	Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin fromPisum sativum. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 695-698.	0.7	18
45	Synthesis of Glyco-Silicas by Cu(I)-Catalyzed "Click-Chemistry―and their Applications in Affinity Chromatography. Advanced Synthesis and Catalysis, 2006, 348, 2410-2420.	4.3	87
46	Production, crystallization and X-ray characterization of chemically glycosylated hen egg-white lysozyme. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 435-438.	0.7	13
47	Structural study of the type II 3-dehydroquinate dehydratase fromActinobacillus pleuropneumoniae. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 463-471.	2.5	12
48	Structure of concanavalin A at pH 8: bound solvent and crystal contacts. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1048-1056.	2.5	6
49	Protein crystal quality in diffusive environments and its evaluation. Journal of Crystal Growth, 2003, 247, 177-184.	1.5	9
50	Soaking: the effect of osmotic shock on tetragonal lysozyme crystals. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 209-214.	2.5	21
51	Ab initiocrystallographic structure determination of insulin from protein to electron density without crystal handling. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1147-1154.	2.5	49
52	Crystallization and cryocrystallography inside X-ray capillaries. Journal of Applied Crystallography, 2001, 34, 365-370.	4.5	29
53	Crystallization screening directly in electrophoresis gels. Journal of Crystal Growth, 2001, 232, 596-602.	1.5	3
54	Structure of a Calix[4]arene by X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, s321-s321.	0.3	0

#	Article	IF	CITATIONS
55	Hybrids from pea chloroplast thioredoxins f and m: physicochemical and kinetic characteristics. Plant Journal, 1998, 15, 155-163.	5.7	7
56	High-Yield Expression of Pea Thioredoxin m and Assessment of Its Efficiency in Chloroplast Fructose-1,6-Bisphosphatase Activation. Plant Physiology, 1997, 114, 1169-1175.	4.8	44
57	Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Letters, 1997, 401, 143-147.	2.8	95
58	Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. Journal of Molecular Evolution, 1996, 42, 422-431.	1.8	67
59	Intron Position as an Evolutionary Marker of Thioredoxins and Thioredoxin Domains. Journal of Molecular Evolution, 1996, 42, 422-431.	1.8	7
60	Highâ€Level Expression of Recombinant Pea Chloroplast Fructoseâ€1,6â€Bisphosphatase and Mutagenesis of Its Regulatory Site. FEBS Journal, 1995, 229, 675-681.	0.2	19
61	High-Level Expression of Recombinant Pea Chloroplast Fructose-1,6-Bisphosphatase and Mutagenesis of Its Regulatory Site. FEBS Journal, 1995, 229, 675-681.	0.2	45
62	High Level Expression of Recombinant Pea Chloroplast Fructose-1,6-Bisphosphatase and Mutagenesis of its Regulatory Site. , 1995, , 3967-3970.		0
63	Purification and Properties of Pea Thioredoxin m Expressed in E. coli. , 1995, , 1643-1646.		0
64	Cloning and Sequencing of a Pea cDNA Fragment Coding for Thioredoxin m. Plant Physiology, 1994, 105, 1021-1022.	4.8	12