Valfredo A Lemos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5281323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta, 2006, 69, 16-24.	2.9	213
2	New Materials for Solidâ€Phase Extraction of Trace Elements. Applied Spectroscopy Reviews, 2008, 43, 303-334.	3.4	151
3	Uranium determination using atomic spectrometric techniques: An overview. Analytica Chimica Acta, 2010, 674, 143-156.	2.6	136
4	Amberlite XAD-2 functionalized with 2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium and copper. Talanta, 2005, 67, 564-570.	2.9	132
5	Application of polyurethane foam as a sorbent for trace metal pre-concentration — A review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 4-12.	1.5	121
6	Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation. Food Chemistry, 2011, 127, 780-783.	4.2	107
7	Review of procedures involving separation and preconcentration for the determination of cadmium using spectrometric techniques. Journal of Hazardous Materials, 2007, 145, 358-367.	6.5	106
8	On-line preconcentration system for nickel determination in food samples by flame atomic absorption spectrometry. Analytica Chimica Acta, 2001, 445, 145-151.	2.6	104
9	Cloud point extraction for Co and Ni determination in water samples by flame atomic absorption spectrometry. Separation and Purification Technology, 2007, 54, 349-354.	3.9	102
10	A procedure for determination of cobalt in water samples after dispersive liquid–liquid microextraction. Microchemical Journal, 2009, 93, 220-224.	2.3	101
11	Preconcentration system for cadmium and lead determination in environmental samples using polyurethane foam/Me-BTANC. Journal of Hazardous Materials, 2006, 136, 757-762.	6.5	98
12	An on-line continuous flow system for copper enrichment and determination by flame atomic absorption spectroscopy. Analytica Chimica Acta, 2000, 403, 259-264.	2.6	97
13	Copper determination in natural water samples by using FAAS after preconcentration onto amberlite XAD-2 loaded with calmagite. Talanta, 2000, 50, 1253-1259.	2.9	96
14	Multivariate optimization techniques in analytical chemistry - an overview. Microchemical Journal, 2018, 140, 176-182.	2.3	91
15	On-line preconcentration system for lead determination in seafood samples by flame atomic absorption spectrometry using polyurethane foam loaded with 2-(2-benzothiazolylazo)-2-p-cresol. Analytica Chimica Acta, 2001, 441, 281-289.	2.6	86
16	Synthesis of amberlite XAD-2-PC resin for preconcentration and determination of trace elements in food samples by flame atomic absorption spectrometry. Microchemical Journal, 2006, 84, 14-21.	2.3	81
17	Analytical strategies of sample preparation for the determination of mercury in food matrices — A review. Microchemical Journal, 2015, 121, 227-236.	2.3	79
18	Deep eutectic solvents in liquid-phase microextraction: Contribution to green chemistry. TrAC - Trends in Analytical Chemistry, 2022, 146, 116478.	5.8	73

#	Article	IF	CITATIONS
19	An on-line system for preconcentration and determination of lead in wine samples by FAAS. Talanta, 2002, 58, 475-480.	2.9	70
20	Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2003, 375, 443-449.	1.9	69
21	Determination of cadmium and lead in human biological samples by spectrometric techniques: a review. Environmental Monitoring and Assessment, 2010, 171, 255-265.	1.3	68
22	A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Analytica Chimica Acta, 2006, 575, 133-137.	2.6	67
23	An on-line cloud point extraction system for flame atomic absorption spectrometric determination of trace manganese in food samples. Microchemical Journal, 2010, 94, 42-47.	2.3	66
24	On-line system for preconcentration and determination of metals in vegetables by Inductively Coupled Plasma Optical Emission Spectrometry. Journal of Hazardous Materials, 2007, 148, 334-339.	6.5	65
25	Development of a new sequential injection in-line cloud point extraction system for flame atomic absorption spectrometric determination of manganese in food samples. Talanta, 2008, 77, 388-393.	2.9	59
26	Thiazolylazo dyes and their application in analytical methods. Mikrochimica Acta, 2007, 158, 189-204.	2.5	54
27	Determination of Copper, Iron, Nickel, and Zinc in Ethanol Fuel by Flame Atomic Absorption Spectrometry Using Onâ€Line Preconcentration System. Separation Science and Technology, 2005, 40, 2555-2565.	1.3	52
28	Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry. Mikrochimica Acta, 2012, 178, 269-275.	2.5	52
29	Application of polyurethane foam loaded with BTAC in an on-line preconcentration system: cadmium determination by FAAS. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1497-1502.	1.5	49
30	On-line preconcentration system using a minicolumn of polyurethane foam loaded with Me-BTABr for zinc determination by Flame Atomic Absorption Spectrometry. Analytica Chimica Acta, 2003, 481, 283-290.	2.6	49
31	Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples. Journal of Hazardous Materials, 2008, 155, 128-134.	6.5	49
32	Synthesis and application of a functionalized resin in on-line system for copper preconcentration and determination in foods by flame atomic absorption spectrometry. Talanta, 2003, 61, 675-682.	2.9	48
33	Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction. Mikrochimica Acta, 2007, 157, 215-222.	2.5	48
34	An automated on-line flow system for the pre-concentration and determination of lead by flame atomic absorption spectrometry. Microchemical Journal, 2001, 68, 41-46.	2.3	45
35	On-Line Preconcentration and Determination of Cadmium, Cobalt and Nickel in Food Samples by Flame Atomic Absorption Spectrometry Using a New Functionalized Resin. Mikrochimica Acta, 2006, 153, 179-186.	2.5	45
36	Development of a cloud-point extraction method for copper and nickel determination in food samples. Journal of Hazardous Materials, 2008, 159, 245-251.	6.5	45

#	Article	IF	CITATIONS
37	A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chemistry, 2014, 149, 203-207.	4.2	44
38	Sensitive spectrophotometric determination of ascorbic acid in fruit juices and pharmaceutical formulations using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP). Fresenius' Journal of Analytical Chemistry, 1997, 357, 1174-1178.	1.5	43
39	Determination of cobalt and manganese in food seasonings by flame atomic absorption spectrometry after preconcentration with 2-hydroxyacetophenone-functionalized polyurethane foam. Journal of Food Composition and Analysis, 2010, 23, 277-281.	1.9	43
40	Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 107, 159-163.	1.5	43
41	On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry. Journal of Hazardous Materials, 2008, 157, 613-619.	6.5	42
42	Amberlite XAD-2 functionalized with Nitroso R salt: synthesis and application in an online system for preconcentration of cobalt. Analytica Chimica Acta, 2003, 494, 87-95.	2.6	41
43	Me-BTABr reagent in cloud point extraction for spectrometric determination of copper in water samples. Journal of the Brazilian Chemical Society, 2006, 17, 30-35.	0.6	41
44	Application of mixture design in analytical chemistry. Microchemical Journal, 2020, 152, 104336.	2.3	40
45	A new functionalized resin and its application in preconcentration system with multivariate optimization for nickel determination in food samples. Talanta, 2005, 66, 174-180.	2.9	37
46	Selectivity enhancement in spectrophotometry: on-line interference suppression using polyurethane foam minicolumn for aluminum determination with Methyl Thymol Blue. Analyst, The, 1999, 124, 805-808.	1.7	36
47	A comparative study of two sorbents for copper in a flow injection preconcentration system. Separation and Purification Technology, 2007, 56, 212-219.	3.9	35
48	An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchemical Journal, 2018, 143, 175-180.	2.3	35
49	A novel strategy based on in-syringe dispersive liquid-liquid microextraction for the determination of nickel in chocolate samples. Talanta, 2019, 193, 23-28.	2.9	34
50	Determination of cobalt, copper and nickel in food samples after pre-concentration on a new pyrocatechol-functionalized polyurethane foam sorbent. Reactive and Functional Polymers, 2007, 67, 573-581.	2.0	33
51	Assessment of cadmium and lead in commercially important seafood from São Francisco do Conde, Bahia, Brazil. Food Control, 2013, 33, 193-199.	2.8	31
52	An automated preconcentration system for the determination of manganese in food samples. Journal of Food Composition and Analysis, 2009, 22, 337-342.	1.9	30
53	Mercury determination in petroleum products by electrothermal atomic absorption spectrometry after in situ preconcentration using multiple injections. Journal of Analytical Atomic Spectrometry, 2006, 21, 1327.	1.6	29
54	Ultrasound-assisted temperature-controlled ionic liquid microextraction for the preconcentration and determination of cadmium content in mussel samples. Food Control, 2015, 50, 901-906.	2.8	28

#	Article	IF	CITATIONS
55	Liquid phase microextraction associated with flow injection systems for the spectrometric determination of trace elements. TrAC - Trends in Analytical Chemistry, 2019, 110, 357-366.	5.8	28
56	Determination of copper, iron, lead and zinc in gasoline by sequential multi-element flame atomic absorption spectrometry after solid phase extraction. Journal of the Brazilian Chemical Society, 2011, 22, 552-557.	0.6	28
57	Method for the determination of cadmium, lead, nickel, cobalt and copper in seafood after dispersive liquid–liquid micro-extraction. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1872-1878.	1.1	26
58	Synthesis of α-Nitroso-β-Naphthol Modified Amberlite XAD-2 Resin and its Application in On-Line Solid Phase Extraction System for Cobalt Preconcentration. Separation Science and Technology, 2004, 39, 3317-3330.	1.3	24
59	Onâ€Line Solid Phase Extraction and Determination of Copper in Food Samples Using Polyurethane Foam Loaded with Meâ€BTANC. Analytical Letters, 2005, 38, 683-696.	1.0	24
60	Determination of copper in biological samples by flame atomic absorption spectrometry after precipitation with Me-BTAP. Environmental Monitoring and Assessment, 2009, 148, 245-253.	1.3	24
61	Automation of continuous flow analysis systems – a review. Microchemical Journal, 2020, 155, 104731.	2.3	24
62	Automatic on-line pre-concentration system using a knotted reactor for the FAAS determination of lead in drinking water. Journal of Hazardous Materials, 2007, 141, 540-545.	6.5	23
63	A novel direct-immersion single-drop microextraction combined with digital colorimetry applied to the determination of vanadium in water. Talanta, 2021, 224, 121893.	2.9	23
64	Chromotropic acid-functionalized polyurethane foam: A new sorbent for on-line preconcentration and determination of cobalt and nickel in lettuce samples. Journal of Separation Science, 2006, 29, 1197-1204.	1.3	22
65	Multivariate optimization of a dispersive liquid-liquid microextraction method for determination of copper and manganese in coconut water by FAAS. Food Chemistry, 2021, 365, 130473.	4.2	22
66	Synthesis and application of XAD-2/Me-BTAP resin for on-line solid phase extraction and determination of trace metals in biological samples by FAAS. Journal of the Brazilian Chemical Society, 2006, 17, 697-704.	0.6	21
67	Single-drop microextraction for the determination of manganese in seafood and water samples. Mikrochimica Acta, 2013, 180, 501-507.	2.5	20
68	Pressure variation in-syringe dispersive liquid-liquid microextraction associated with digital image colorimetry: Determination of cobalt in food samples. Microchemical Journal, 2020, 157, 105064.	2.3	20
69	An online preconcentration system for the determination of uranium in water and effluent samples. Environmental Monitoring and Assessment, 2010, 171, 163-169.	1.3	19
70	Homogeneity study of a corn flour laboratory reference material candidate for inorganic analysis. Food Chemistry, 2015, 178, 287-291.	4.2	18
71	In-syringe dispersive liquid-liquid microextraction. Talanta, 2022, 238, 123002.	2.9	18
72	Determination of Cu, Ni, Mn, and Pb in diesel oil samples using reversed-phase vortex-assisted liquid-liquid microextraction associated with energy dispersive X-ray fluorescence spectrometry. Talanta, 2021, 222, 121514.	2.9	17

#	Article	IF	CITATIONS
73	A preconcentration procedure for the determination of cadmium in biological material after on-line cloud point extraction. Environmental Monitoring and Assessment, 2012, 184, 4455-4460.	1.3	16
74	Preconcentration Systems Using Polyurethane Foam/Me-BDBD for Determination of Copper in Food Samples. Mikrochimica Acta, 2006, 153, 193-201.	2.5	15
75	Thermospray generation directly into a flame furnace—An alternative to improve the detection power in atomic absorption spectrometry. Talanta, 2010, 82, 437-443.	2.9	15
76	Switchable-hydrophilicity solvent-based liquid-phase microextraction in an on-line system: Cobalt determination in food and water samples. Talanta, 2022, 238, 123038.	2.9	15
77	Synthesis and Application of a New Functionalized Resin in Onâ€Line Preconcentration of Lead. Separation Science and Technology, 2005, 40, 1401-1414.	1.3	14
78	Dispersive Liquid–Liquid Microextraction for Preconcentration and Determination of Nickel in Water. Clean - Soil, Air, Water, 2012, 40, 268-271.	0.7	13
79	Development of a Method Using Ultrasound-Assisted Emulsification Microextraction for the Determination of Nickel in Water Samples. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	13
80	Direct and Simultaneous Determination of Copper and Iron in Flours by Solid Sample Analysis and High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Food Analytical Methods, 2017, 10, 469-476.	1.3	13
81	Determination of cadmium in bread and biscuit samples using ultrasoundâ€assisted temperatureâ€controlled ionic liquid microextraction. Journal of the Science of Food and Agriculture, 2019, 99, 4609-4614.	1.7	13
82	Emulsification solidified floating organic drop microextraction assisted by ultrasound for the determination of nickel, cobalt and copper in oyster and fish samples. Analytical Methods, 2020, 12, 865-871.	1.3	13
83	Strategies for inorganic speciation analysis employing spectrometric techniques–Review. Microchemical Journal, 2020, 153, 104402.	2.3	13
84	Direct Immersion Single-Drop Microextraction and Continuous-Flow Microextraction for the Determination of Manganese in Tonic Drinks and Seafood Samples. Food Analytical Methods, 2020, 13, 1681-1689.	1.3	13
85	Application of simplex optimization in the development of an automated online preconcentration system for manganese determination. Journal of the Brazilian Chemical Society, 2010, 21, 2340-2346.	0.6	12
86	A New Simple and Fast Method for Determination of Cobalt in Vitamin B12 and Water Samples Using Dispersive Liquid-Liquid Microextraction and Digital Image Analysis. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	12
87	Applications of biosorbents in atomic spectrometry. Applied Spectroscopy Reviews, 2016, 51, 36-72.	3.4	11
88	Spectrophotometric Determination of Mercury in Water Samples After Preconcentration Using Dispersive Liquid–Liquid Microextraction. Journal of AOAC INTERNATIONAL, 2012, 95, 227-231.	0.7	10
89	A New Functionalized Resin for Preconcentration and Determination of Cadmium, Cobalt, and Nickel in Sediment Samples. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	10
90	On-line simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2011, 91, 1425-1435.	1.8	9

#	Article	IF	CITATIONS
91	Spectrophotometric Determination of Aluminium in Iron Ores Using Solid-Phase Extraction. Journal of the Brazilian Chemical Society, 1998, 9, 151-156.	0.6	8
92	Determination of Lead and Manganese in Biological Samples and Sediment Using Slurry Sampling and Flame Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2011, 94, 645-649.	0.7	8
93	Sensitive determination of trace molybdenum in natural waters using dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Analytical Methods, 2013, 5, 2098.	1.3	8
94	Development of an On-line Preconcentration System for Determination of Mercury in Environmental Samples. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	8
95	Determination of Vanadium Levels in Seafood Using Dispersive Liquid-Liquid Microextraction and Optical Sensors. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	8
96	A Method Using Liquid-Liquid Microextraction in a Dynamic System for Preconcentration and Determination of Lead in Food Samples. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	8
97	A closed inline system for sample digestion using 70% hydrogen peroxide and UV radiation. Determination of lead in wine employing ETAAS. Talanta, 2019, 191, 479-484.	2.9	8
98	Multivariate optimization of ultrasound-assisted liquid–liquid microextraction based on two solvents for cadmium preconcentration prior to determination by flame atomic absorption spectrometry. Analytical Methods, 2021, 13, 267-273.	1.3	8
99	Determination of arsenic in chicken feed by hydride generation atomic absorption spectrometry after pre-concentration with polyurethane foam. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1689-1695.	1.1	7
100	Methods of liquid phase microextraction for the determination of cadmium in environmental samples. Environmental Monitoring and Assessment, 2017, 189, 444.	1.3	7
101	Solid-Phase Extraction and Detection by Digital Image Directly in the Sorbent: Determination of Nickel in Environmental Samples. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
102	Conversion of an invasive plant into a new solid phase for lead preconcentration for analytical purpose. Environmental Technology and Innovation, 2021, 21, 101336.	3.0	7
103	Ultrasound-Assisted Emulsification Microextraction in an Online System for Determination of Cadmium in Water and Tea Samples. Journal of AOAC INTERNATIONAL, 2018, 101, 1647-1652.	0.7	6
104	Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Melting of the Donor Phase: a New Approach for the Determination of Trace Elements in Solid Samples. Food Analytical Methods, 2021, 14, 596-605.	1.3	6
105	Synthesis and Application of a New Thiazolylazo Reagent for Cloud Point Extraction and Determination of Cobalt in Pharmaceutical Preparations. Journal of AOAC INTERNATIONAL, 2011, 94, 1304-1309.	0.7	5
106	Deep eutectic solvent in ultrasound-assisted liquid-phase microextraction for determination of vanadium in food and environmental waters. Microchemical Journal, 2022, 180, 107543.	2.3	5
107	Determination of lead in water samples after its separation and preconcentration by 4,5-dihydroxy-1,3-benzenedisulfonic acid functionalised polyurethane foam. International Journal of Environmental Analytical Chemistry, 2012, 92, 1121-1134.	1.8	4
108	An on-line preconcentration system for the determination of selenium in seawater samples. Analytical Methods, 2013, 5, 4501.	1.3	4

#	Article	IF	CITATIONS
109	Preparation and characterization of a new reference material for the inorganic analysis of corn flour. Accreditation and Quality Assurance, 2017, 22, 37-43.	0.4	4
110	A Miniaturized Gas-Liquid Separator for Use in Liquid-Phase Microextraction Procedures: Determination of Mercury in Food. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	4
111	Strategies to Make Methods Based on Flow Injection Analysis Greener. Clean - Soil, Air, Water, 2020, 48, 2000007.	0.7	4
112	Aplicação de um corante tiazolilazo como indicador ácido-base e determinação das suas constantes de ionização ácida. Quimica Nova, 2009, 32, 1943-1946.	0.3	3
113	Development of a method for the determination of cadmium levels in seawater by flame atomic absorption spectrometry using an online cloud-point extraction system. Turkish Journal of Chemistry, 2016, 40, 1055-1063.	0.5	3
114	A new method for the speciation of arsenic species in water, seafood and cigarette samples using an eggshell membrane. Journal of the Iranian Chemical Society, 2019, 16, 1879-1889.	1.2	3
115	Use of Functionalized Resin for Matrix Separation and Trace Elements Determination in Petroleum Produced Formation Water by Inductively Coupled Plasma Mass Spectrometry. , 2012, 2012, 1-8.		2
116	Application of a Novel Ion-Imprinted Polymer to the Separation of Traces of CdII Ions in Natural Water: Optimization by Box-Behnken Design. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
117	Application of Simplex Optimization in the Development of an On-line Preconcentration System for the Determination of Cu in Human Hair Samples Using FAAS. Current Analytical Chemistry, 2016, 12, 573-579.	0.6	2
118	Use of Arduino in the Development of a New and Fast Automated Online Preconcentration System Based on Double-Knotted Reactor for the Mn Determination in Tea Samples by Flame Atomic Absorption Spectrometry (F AAS). Journal of the Brazilian Chemical Society, 0, , .	0.6	1
119	A new green method employing ultrasonic-assisted liquid-phase microextraction and digital imaging colorimetry for the determination of mefenamic acid in medicinal products. Microchemical Journal, 2022, 179, 107538.	2.3	1
120	Vortex-Assisted Ionic Liquid-Based Liquid-Phase Microextraction: A Simple, Low-Cost, and Environmentally Friendly Method for Speciation of Antimony in Water. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
121	Yellow Mombin (Spondias mombin L.) Seeds from Agro-Industrial Waste as a Novel Adsorbent for Removal of Hexavalent Chromium from Aqueous Solutions. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
122	Synthesis and application of XAD-2/Me-BTAP resin for on-line solid phase extraction and determination of trace metals in biological samples by FAAS. Journal of the Brazilian Chemical Society, 2006, 17, 1452-1452.	0.6	0
123	Evaluation of Two Statistical Tools (Least Squares Regression and Artificial Neural Network) in the Multivariate Optimization of Solid-Phase Extraction for Cadmium Determination in Leachate Samples. Journal of the Brazilian Chemical Society, 2014, , .	0.6	0