
Susanna Iossa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gut and liver metabolic responses to dietary fructose – are they reversible or persistent after switching to a healthy diet?. Food and Function, 2021, 12, 7557-7568.	2.1	4
2	Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus. Antioxidants, 2021, 10, 487.	2.2	12
3	Prolonged Changes in Hepatic Mitochondrial Activity and Insulin Sensitivity by High Fructose Intake in Adolescent Rats. Nutrients, 2021, 13, 1370.	1.7	7
4	Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients, 2021, 13, 1.	1.7	155
5	Brain Nrf2 pathway, autophagy, and synaptic function proteins are modulated by a short-term fructose feeding in young and adult rats. Nutritional Neuroscience, 2020, 23, 309-320.	1.5	19
6	A Shortâ€Term Western Diet Impairs Cholesterol Homeostasis and Key Players of Beta Amyloid Metabolism in Brain of Middle Aged Rats. Molecular Nutrition and Food Research, 2020, 64, 2000541.	1.5	13
7	Adipose Tissue and Brain Metabolic Responses to Western Diet—Is There a Similarity between the Two?. International Journal of Molecular Sciences, 2020, 21, 786.	1.8	15
8	Bacillus megaterium SF185 spores exert protective effects against oxidative stress in vivo and in vitro. Scientific Reports, 2019, 9, 12082.	1.6	24
9	Early Hepatic Oxidative Stress and Mitochondrial Changes Following Western Diet in Middle Aged Rats. Nutrients, 2019, 11, 2670.	1.7	11
10	Effect of Initial Aging and High-Fat/High-Fructose Diet on Mitochondrial Bioenergetics and Oxidative Status in Rat Brain. Molecular Neurobiology, 2019, 56, 7651-7663.	1.9	22
11	Metabolic Effects of the Sweet Protein MNEI as a Sweetener in Drinking Water. A Pilot Study of a High Fat Dietary Regimen in a Rodent Model. Nutrients, 2019, 11, 2643.	1.7	4
12	Prep1 deficiency improves metabolic response in white adipose tissue. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 515-525.	1.2	8
13	Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats. Molecular Neurobiology, 2018, 55, 2869-2883.	1.9	50
14	Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats. Frontiers in Physiology, 2018, 9, 411.	1.3	28
15	Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. Journal of Endocrinology, 2017, 233, R15-R42.	1.2	202
16	Dietary fructose causes defective insulin signalling and ceramide accumulation in the liver that can be reversed by gut microbiota modulation. Food and Nutrition Research, 2017, 61, 1331657.	1.2	44
17	Polyunsaturated Fatty Acids Stimulate De novo Lipogenesis and Improve Glucose Homeostasis during Refeeding with High Fat Diet. Frontiers in Physiology, 2017, 8, 178.	1.3	16
18	Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats. Nutrients, 2017, 9, 323.	1.7	63

#	Article	IF	CITATIONS
19	A possible link between hepatic mitochondrial dysfunction and diet-induced insulin resistance. European Journal of Nutrition, 2016, 55, 1-6.	1.8	43
20	Fat Quality Influences the Obesogenic Effect of High Fat Diets. Nutrients, 2015, 7, 9475-9491.	1.7	40
21	Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS ONE, 2015, 10, e0134893.	1.1	135
22	Regulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the "old― triiodothyronine and the "emerging―3,5-diiodothyronine. Frontiers in Physiology, 2015, 6, 237.	1.3	36
23	Skeletal Muscle Mitochondrial Energetic Efficiency and Aging. International Journal of Molecular Sciences, 2015, 16, 10674-10685.	1.8	24
24	The effect of high-fat–high-fructose diet on skeletal muscle mitochondrial energetics in adult rats. European Journal of Nutrition, 2015, 54, 183-192.	1.8	29
25	Fructose supplementation worsens the deleterious effects of shortâ€ŧerm highâ€fat feeding on hepatic steatosis and lipid metabolism in adult rats. Experimental Physiology, 2014, 99, 1203-1213.	0.9	50
26	Subsarcolemmal and intermyofibrillar mitochondrial responses to short-term high-fat feeding in rat skeletal muscle. Nutrition, 2014, 30, 75-81.	1.1	9
27	Adipose tissue remodeling in rats exhibiting fructose-induced obesity. European Journal of Nutrition, 2014, 53, 413-419.	1.8	46
28	Alterations in proton leak, oxidative status and uncoupling protein 3 content in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria in old rats. BMC Geriatrics, 2014, 14, 79.	1.1	15
29	Mitochondrial efficiency and insulin resistance. Frontiers in Physiology, 2014, 5, 512.	1.3	48
30	Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. European Journal of Nutrition, 2013, 52, 537-545.	1.8	98
31	Increased skeletal muscle mitochondrial efficiency in rats with fructose-induced alteration in glucose tolerance. British Journal of Nutrition, 2013, 110, 1996-2003.	1.2	34
32	Caloric Restriction Followed by High Fat Feeding Predisposes to Oxidative Stress in Skeletal Muscle Mitochondria. Hormone and Metabolic Research, 2013, 45, 874-879.	0.7	3
33	Mitochondrial energetics in liver and skeletal muscle after energy restriction in young rats. British Journal of Nutrition, 2012, 108, 655-665.	1.2	14
34	Hepatic Mitochondrial Energetics During Catchâ€Up Fat With Highâ€Fat Diets Rich in Lard or Safflower Oil. Obesity, 2012, 20, 1763-1772.	1.5	16
35	Hepatic mitochondrial energetics during catch-up fat after caloric restriction. Metabolism: Clinical and Experimental, 2010, 59, 1221-1230.	1.5	16
36	Alterations in Hepatic Mitochondrial Compartment in a Model of Obesity and Insulin Resistance. Obesity, 2008, 16, 958-964.	1.5	104

#	Article	IF	CITATIONS
37	Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. International Journal of Obesity, 2007, 31, 1596-1604.	1.6	61
38	Heterogeneous bioenergetic behaviour of subsarcolemmal and intermyofibrillar mitochondria in fed and fasted rats. Cellular and Molecular Life Sciences, 2006, 63, 358-366.	2.4	37
39	Altered Skeletal Muscle Subsarcolemmal Mitochondrial Compartment During Catch-Up Fat After Caloric Restriction. Diabetes, 2006, 55, 2286-2293.	0.3	69
40	Cold exposure differently influences mitochondrial energy efficiency in rat liver and skeletal muscle. FEBS Letters, 2005, 579, 1978-1982.	1.3	35
41	A Possible Link Between Skeletal Muscle Mitochondrial Efficiency and Age-Induced Insulin Resistance. Diabetes, 2004, 53, 2861-2866.	0.3	66
42	Modulation of hepatic mitochondrial energy efficiency with age. Cellular and Molecular Life Sciences, 2004, 61, 1366-1371.	2.4	14
43	Metabolic efficiency of liver mitochondria in rats with decreased thermogenesis. FEBS Letters, 2003, 544, 133-137.	1.3	2
44	Skeletal muscle mitochondrial oxidative capacity and uncoupling protein 3 are differently influenced by semistarvation and refeeding. FEBS Letters, 2003, 544, 138-142.	1.3	17
45	Effect of high-fat feeding on metabolic efficiency and mitochondrial oxidative capacity in adult rats. British Journal of Nutrition, 2003, 90, 953-960.	1.2	117
46	Skeletal muscle oxidative capacity in rats fed high-fat diet. International Journal of Obesity, 2002, 26, 65-72.	1.6	80
47	Acetyl-L-Carnitine Supplementation Differently Influences Nutrient Partitioning, Serum Leptin Concentration and Skeletal Muscle Mitochondrial Respiration in Young and Old Rats. Journal of Nutrition, 2002, 132, 636-642.	1.3	35
48	Skeletal muscle mitochondrial efficiency and uncoupling protein 3 in overeating rats with increased thermogenesis. Pflugers Archiv European Journal of Physiology, 2002, 445, 431-436.	1.3	18
49	Differences in proton leak kinetics, but not in UCP3 protein content, in subsarcolemmal and intermyofibrillar skeletal muscle mitochondria from fed and fasted rats. FEBS Letters, 2001, 505, 53-56.	1.3	20
50	Effect of cold exposure on energy balance and liver respiratory capacity in post-weaning rats fed a high-fat diet. British Journal of Nutrition, 2001, 85, 89-96.	1.2	10
51	Acetyl-L-carnitine treatment stimulates oxygen consumption and biosynthetic function in perfused liver of young and old rats. Cellular and Molecular Life Sciences, 2001, 58, 477-484.	2.4	16
52	Fat balance and serum leptin concentrations in normal, hypothyroid, and hyperthyroid rats. International Journal of Obesity, 2001, 25, 417-425.	1.6	32
53	Mitochondrial Respiration and Triiodothyronine Concentration in Liver from Postpubertal and Adult Rats. Hormone and Metabolic Research, 2001, 33, 343-347.	0.7	8
54	Effect of long-term high-fat feeding on energy balance and liver oxidative activity in rats. British Journal of Nutrition, 2000, 84, 377-385.	1.2	35

#	Article	IF	CITATIONS
55	Energy Intake and Utilization Vary During Development in Rats. Journal of Nutrition, 1999, 129, 1593-1596.	1.3	52
56	Fat balance and hepatic mitochondrial function in response to fat feeding in mature rats. International Journal of Obesity, 1999, 23, 1122-1128.	1.6	10
57	Stimulation of oxygen consumption following addition of lipid substrates in liver and skeletal muscle from rats fed a high-fat diet. Metabolism: Clinical and Experimental, 1999, 48, 1230-1235.	1.5	16
58	Steady state changes in mitochondrial electrical potential and proton gradient in perfused liver from rats fed a high fat diet. Molecular and Cellular Biochemistry, 1998, 178, 213-217.	1.4	18
59	Rat liver mitochondrial respiratory capacities in the transition from weaning to adulthood. Mechanisms of Ageing and Development, 1998, 100, 59-66.	2.2	1
60	Oxidative activity in mitochondria isolated from rat liver at different stages of development. , 1998, 16, 261-268.		4
61	Oxygen consumption and biosynthetic function in perfused liver from rats at different stages of development. Cellular and Molecular Life Sciences, 1998, 54, 1277-1282.	2.4	5
62	Changes in the Hepatic Mitochondrial Respiratory System in the Transition from Weaning to Adulthood in Rats. Archives of Biochemistry and Biophysics, 1998, 352, 240-246.	1.4	17
63	Effect of a high-fat diet on energy balance and thermic effect of food in hypothyroid rats. European Journal of Endocrinology, 1997, 136, 309-315.	1.9	6
64	Energy balance and liver respiratory activity in rats fed on an energy-dense diet. British Journal of Nutrition, 1997, 77, 99-105.	1.2	20
65	Thermic effect of food in hypothyroid rats. Journal of Endocrinology, 1996, 148, 167-174.	1.2	14
66	Hepatic fatty acid-supported respiration in rats fed an energy-dense diet. Cell Biochemistry and Function, 1996, 14, 283-289.	1.4	2
67	Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet. Molecular and Cellular Biochemistry, 1996, 158, 133-8.	1.4	17
68	The mechanism of stimulation of respiration in isolated hepatocytes from rats fed an energy-dense diet. Journal of Nutritional Biochemistry, 1996, 7, 571-576.	1.9	9
69	Hepatic Fatty Acidâ€Supported Respiration in Rats Fed an Energyâ€Dense Diet. Cell Biochemistry and Function, 1996, 14, 283-289.	1.4	5
70	Different effects of cold exposure and cold acclimation on rat liver mitochondrial fatty acid oxidation and ketone bodies production. International Journal of Biochemistry & Cell Biology, 1994, 26, 425-431.	0.8	7
71	Hepatic mitochondrial respiratory capacity in hyperphagic rats. Nutrition Research, 1994, 14, 1671-1682.	1.3	13
72	Relationship between the resting metabolic rate and hepatic metabolism in rats: effect of hyperthyroidism and fasting for 24 hours. Journal of Endocrinology, 1992, 135, 45-51.	1.2	16

#	Article	IF	CITATIONS
73	Relationship between Resting Metabolism and Hepatic Metabolism: Effect of Hypothyroidism and 24 Hours Fasting. Hormone Research, 1992, 38, 154-159.	1.8	16
74	Rat liver response elicited by long-term cold exposure. Journal of Physiology (Paris), 1992, 86, 195-200.	2.1	3
75	Metabolic activity in isolated hepatocytes from cold exposed rats subjected to 24-hour fasting. Cell Biochemistry and Function, 1992, 10, 27-30.	1.4	1
76	Physiological Changes due to Cold Adaptation in Rat Liver. Cellular Physiology and Biochemistry, 1991, 1, 226-236.	1.1	5
77	The effect of cold exposure on rat liver mitochondrial respiratory capacity. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 98, 583-585.	0.2	6
78	Hepatic selective adjustments in short-term cold exposed rats. Cell Biochemistry and Function, 1991, 9, 275-280.	1.4	5
79	Effect of thyroid state and cold exposure on rat liver mitochondrial protein mass and function. Journal of Endocrinology, 1991, 131, 67-73.	1.2	10
80	Elevated hepatic mitochondrial oxidative capacities in cold exposed rats. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 97, 327-331.	0.2	5
81	The effect of thyroid state on respiratory activities of three rat liver mitochondrial fractions. Molecular and Cellular Endocrinology, 1989, 62, 41-46.	1.6	22
82	Light mitochondria and cellular thermogenesis. Biochemical and Biophysical Research Communications, 1988, 151, 1241-1249.	1.0	39
83	Tri-iodothyronine enhances the formation of light mitochondria during cold exposure. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 85, 869-873.	0.2	5