
## Berthold A Nock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5281110/publications.pdf Version: 2024-02-01



REPTHOLD & NOCK

| #  | Article                                                                                                                                                                                                                                                | IF        | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1  | Peptide radiopharmaceuticals for targeted diagnosis & therapy of human tumors. , 2022, , .                                                                                                                                                             |           | 0         |
| 2  | Gamma camera imaging by radiolabeled gastrin/cholecystokinin analogs. , 2022, , .                                                                                                                                                                      |           | 0         |
| 3  | Nonpeptidic Z360-Analogs Tagged with Trivalent Radiometals as Anti-CCK2R Cancer Theranostic Agents:<br>A Preclinical Study. Pharmaceutics, 2022, 14, 666.                                                                                              | 2.0       | 3         |
| 4  | GRPr Antagonist <sup>68</sup> Ga-SB3 PET/CT Imaging of Primary Prostate Cancer in Therapy-NaÃ⁻ve<br>Patients. Journal of Nuclear Medicine, 2021, 62, 1517-1523.                                                                                        | 2.8       | 17        |
| 5  | [99mTc]Tc-DB15 in GRPR-Targeted Tumor Imaging with SPECT: From Preclinical Evaluation to the First Clinical Outcomes. Cancers, 2021, 13, 5093.                                                                                                         | 1.7       | 14        |
| 6  | Radiolabeled Bombesin Analogs. Cancers, 2021, 13, 5766.                                                                                                                                                                                                | 1.7       | 34        |
| 7  | Optimizing the Profile of [99mTc]Tc–NT(7–13) Tracers in Pancreatic Cancer Models by Means of<br>Protease Inhibitors. International Journal of Molecular Sciences, 2020, 21, 7926.                                                                      | 1.8       | 7         |
| 8  | [99mTc]Tc-DB1 Mimics with Different-Length PEG Spacers: Preclinical Comparison in GRPR-Positive Models. Molecules, 2020, 25, 3418.                                                                                                                     | 1.7       | 8         |
| 9  | One Step Closer to Clinical Translation: Enhanced Tumor Targeting of [99mTc]Tc-DB4 and [111In]In-SG4 in Mice Treated with Entresto. Pharmaceutics, 2020, 12, 1145.                                                                                     | 2.0       | 9         |
| 10 | Key-Protease Inhibition Regimens Promote Tumor Targeting of Neurotensin Radioligands.<br>Pharmaceutics, 2020, 12, 528.                                                                                                                                 | 2.0       | 8         |
| 11 | Instant kit preparation of 68Ca-radiopharmaceuticals via the hybrid chelator DATA: clinical translation of [68Ca]Ga-DATA-TOC. EJNMMI Research, 2019, 9, 48.                                                                                            | 1.1       | 20        |
| 12 | Theranostic approaches in nuclear oncology: From bench to bed. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 612-614.                                                                                                              | 0.5       | 2         |
| 13 | Trastuzumab cotreatment improves survival of mice with PCâ€3 prostate cancer xenografts treated<br>with the GRPR antagonist <sup>177</sup> Luâ€ĐOTAGAâ€PEG <sub>2</sub> â€RM26. International Journal of<br>Cancer, 2019, 145, 3347-3358.              | 2.3       | 30        |
| 14 | Comparing Gly11/dAla11-Replacement vs. the in-Situ Neprilysin-Inhibition Approach on the<br>Tumor-targeting Efficacy of the 111In-SB3/111In-SB4 Radiotracer Pair. Molecules, 2019, 24, 1015.                                                           | 1.7       | 11        |
| 15 | Localization of 99mTc-GRP Analogs in GRPR-Expressing Tumors: Effects of Peptide Length and Neprilysin Inhibition on Biological Responses. Pharmaceuticals, 2019, 12, 42.                                                                               | 1.7       | 8         |
| 16 | Comparative evaluation of the new GRPRâ€antagonist <sup>111</sup> In‣B9 and <sup>111</sup> Inâ€AMBA i<br>prostate cancer models: Implications of in vivo stability. Journal of Labelled Compounds and<br>Radiopharmaceuticals, 2019, 62, 646-655.      | in<br>0.5 | 10        |
| 17 | Radiometal-Dependent Biological Profile of the Radiolabeled Gastrin-Releasing Peptide Receptor<br>Antagonist SB3 in Cancer Theranostics: Metabolic and Biodistribution Patterns Defined by Neprilysin.<br>Bioconjugate Chemistry, 2018, 29, 1774-1784. | 1.8       | 27        |
| 18 | In Vivo Stabilized SB3, an Attractive GRPR Antagonist, for Pre- and Intra-Operative Imaging for Prostate<br>Cancer. Molecular Imaging and Biology, 2018, 20, 973-983.                                                                                  | 1.3       | 13        |

Berthold A Nock

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | New Gastrin Releasing Peptide Receptor-Directed [ <sup>99m</sup> Tc]Demobesin 1 Mimics: Synthesis<br>and Comparative Evaluation. Journal of Medicinal Chemistry, 2018, 61, 3138-3150.                                                                                         | 2.9 | 20        |
| 20 | From Bench to Bed. PET Clinics, 2017, 12, 205-217.                                                                                                                                                                                                                            | 1.5 | 29        |
| 21 | Amide-to-triazole switch vs. in vivo NEP-inhibition approaches to promote radiopeptide targeting of GRPR-positive tumors. Nuclear Medicine and Biology, 2017, 52, 57-62.                                                                                                      | 0.3 | 14        |
| 22 | Theranostic Prospects of Gastrin-Releasing Peptide Receptor–Radioantagonists in Oncology. PET<br>Clinics, 2017, 12, 297-309.                                                                                                                                                  | 1.5 | 49        |
| 23 | Novel bifunctional DATA chelator for quick access to site-directed PET <sup>68</sup> Ga-radiotracers:<br>preclinical proof-of-principle with [Tyr <sup>3</sup> ]octreotide. Dalton Transactions, 2017, 46,<br>14584-14590.                                                    | 1.6 | 15        |
| 24 | Theranostic Perspectives in Prostate Cancer with the Gastrin-Releasing Peptide Receptor Antagonist<br>NeoBOMB1: Preclinical and First Clinical Results. Journal of Nuclear Medicine, 2017, 58, 75-80.                                                                         | 2.8 | 129       |
| 25 | <sup>68</sup> Ga/ <sup>177</sup> Lu-NeoBOMB1, a Novel Radiolabeled GRPR Antagonist for Theranostic<br>Use in Oncology. Journal of Nuclear Medicine, 2017, 58, 293-299.                                                                                                        | 2.8 | 98        |
| 26 | NeoBOMB1, a GRPR-Antagonist for Breast Cancer Theragnostics: First Results of a Preclinical Study with [67Ga]NeoBOMB1 in T-47D Cells and Tumor-Bearing Mice. Molecules, 2017, 22, 1950.                                                                                       | 1.7 | 32        |
| 27 | In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and<br>Radionuclide Therapy of Prostate Cancer in Preclinical Studies. Theranostics, 2016, 6, 104-117.                                                                          | 4.6 | 53        |
| 28 | 99mTc-labeled gastrins of varying peptide chain length: Distinct impact of NEP/ACE-inhibition on stability and tumor uptake in mice. Nuclear Medicine and Biology, 2016, 43, 347-354.                                                                                         | 0.3 | 15        |
| 29 | Preclinical pharmacokinetics, biodistribution, radiation dosimetry and toxicity studies required for regulatory approval of a phase I clinical trial with 111In-CPO4 in medullary thyroid carcinoma patients. European Journal of Pharmaceutical Sciences, 2016, 91, 236-242. | 1.9 | 43        |
| 30 | Impact of clinically tested NEP/ACE inhibitors on tumor uptake of [111In-DOTA]MG11—first estimates for clinical translation. EJNMMI Research, 2016, 6, 15.                                                                                                                    | 1.1 | 23        |
| 31 | Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist<br>[68Ga]SB3 and PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 964-973.                                                                      | 3.3 | 90        |
| 32 | Improving the <i>In Vivo</i> Profile of Minigastrin Radiotracers: A Comparative Study Involving the<br>Neutral Endopeptidase Inhibitor Phosphoramidon. Cancer Biotherapy and Radiopharmaceuticals, 2016,<br>31, 20-28.                                                        | 0.7 | 24        |
| 33 | In vivo inhibition of neutral endopeptidase enhances the diagnostic potential of truncated gastrin 111In-radioligands. Nuclear Medicine and Biology, 2015, 42, 824-832.                                                                                                       | 0.3 | 15        |
| 34 | In Vitro and In Vivo Application of Radiolabeled Gastrin-Releasing Peptide Receptor Ligands in Breast<br>Cancer. Journal of Nuclear Medicine, 2015, 56, 752-757.                                                                                                              | 2.8 | 49        |
| 35 | <i>In Vivo</i> Enzyme Inhibition Improves the Targeting of [ <sup>177</sup> Lu]DOTA-GRP(13–27) in GRPR-Positive Tumors in Mice. Cancer Biotherapy and Radiopharmaceuticals, 2014, 29, 359-367.                                                                                | 0.7 | 9         |
| 36 | "To Serve and Protectâ€: Enzyme Inhibitors as Radiopeptide Escorts Promote Tumor Targeting. Journal<br>of Nuclear Medicine, 2014, 55, 121-127.                                                                                                                                | 2.8 | 101       |

Berthold A Nock

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | [ <sup>111</sup> In-DOTA]LTT-SS28, a First Pansomatostatin Radioligand for in Vivo Targeting of<br>Somatostatin Receptor-Positive Tumors. Journal of Medicinal Chemistry, 2014, 57, 6564-6571.                                                           | 2.9 | 18        |
| 38 | [DOTA]Somatostatin-14 analogs and their 111In-radioligands: Effects of decreasing ring-size on sst1–5 profile, stability and tumor targeting. European Journal of Medicinal Chemistry, 2014, 73, 30-37.                                                  | 2.6 | 12        |
| 39 | GRP Receptor Imaging of Prostate Cancer Using [99mTc]Demobesin 4: a First-in-Man Study. Molecular<br>Imaging and Biology, 2014, 16, 888-895.                                                                                                             | 1.3 | 44        |
| 40 | Tumor Diagnosis with New <sup>111</sup> In-Radioligands Based on Truncated Human Gastrin<br>Releasing Peptide Sequences: Synthesis and Preclinical Comparison. Journal of Medicinal Chemistry,<br>2013, 56, 8579-8587.                                   | 2.9 | 13        |
| 41 | Gastrin Releasing Peptide Receptor-Directed Radioligands Based on a Bombesin Antagonist: Synthesis,<br><sup>111</sup> In-Labeling, and Preclinical Profile. Journal of Medicinal Chemistry, 2013, 56, 2374-2384.                                         | 2.9 | 28        |
| 42 | <sup>99m</sup> Tc Radiotracers Based on Human GRP(18-27): Synthesis and Comparative Evaluation.<br>Journal of Nuclear Medicine, 2013, 54, 1797-1803.                                                                                                     | 2.8 | 21        |
| 43 | Tetraamine-Coupled Peptides and Resulting 99mTc-Radioligands: An Effective Route for<br>Receptor-Targeted Diagnostic Imaging of Human Tumors. Current Topics in Medicinal Chemistry, 2013,<br>12, 2655-2667.                                             | 1.0 | 25        |
| 44 | [ <sup>99m</sup> Tc]Demomedin C, a Radioligand Based on Human Gastrin Releasing Peptide(18-27):<br>Synthesis and Preclinical Evaluation in Gastrin Releasing Peptide Receptor-Expressing Models. Journal<br>of Medicinal Chemistry, 2012, 55, 8364-8374. | 2.9 | 13        |
| 45 | [111In-DOTA]Somatostatin-14 analogs as potential pansomatostatin-like radiotracers - first results of a preclinical study. EJNMMI Research, 2012, 2, 25.                                                                                                 | 1.1 | 24        |
| 46 | Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a<br>collaborative project under COST BM0607. European Journal of Nuclear Medicine and Molecular<br>Imaging, 2011, 38, 1426-1435.                                 | 3.3 | 70        |
| 47 | Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 1265-1272.                                                     | 3.3 | 76        |
| 48 | [99mTc]Demotensin 5 and 6 in the NTS1-R-targeted imaging of tumours: synthesis and preclinical results. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1804-1814.                                                                 | 3.3 | 37        |
| 49 | Toward Stable N4-Modified Neurotensins for NTS1-Receptor-Targeted Tumor Imaging with 99mTc.<br>Journal of Medicinal Chemistry, 2006, 49, 4767-4776.                                                                                                      | 2.9 | 46        |
| 50 | Potent Bombesin-like Peptides for GRP-Receptor Targeting of Tumors with 99mTc:  A Preclinical Study.<br>Journal of Medicinal Chemistry, 2005, 48, 100-110.                                                                                               | 2.9 | 149       |
| 51 | CCK-2/gastrin receptor-targeted tumor imaging with (99m)Tc-labeled minigastrin analogs. Journal of<br>Nuclear Medicine, 2005, 46, 1727-36.                                                                                                               | 2.8 | 72        |