
Thomas Weisse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnology and Oceanography, 1990, 35, 781-794.	1.6	236
2	Dynamics of Autotrophic Picoplankton in Marine and Freshwater Ecosystems. Advances in Microbial Ecology, 1993, , 327-370.	0.1	218
3	Seasonal succession of ciliates in lake constance. Microbial Ecology, 1991, 21, 119-138.	1.4	142
4	Dynamics of autotrophic picoplankton in Lake Constance. Journal of Plankton Research, 1988, 10, 1179-1188.	0.8	139
5	Dispersal and Phylogenetic Diversity of Nonmarine Picocyanobacteria, Inferred from 16S rRNA Gene and cpcBA -Intergenic Spacer Sequence Analyses. Applied and Environmental Microbiology, 2003, 69, 5716-5721.	1.4	139
6	The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. Journal of Plankton Research, 1991, 13, 167-185.	0.8	137
7	The trophic significance of Phaeocystis blooms. Journal of Marine Systems, 1994, 5, 67-79.	0.9	112
8	Beyond the "Code― A Guide to the Description and Documentation of Biodiversity in Ciliated Protists (Alveolata, Ciliophora). Journal of Eukaryotic Microbiology, 2017, 64, 539-554.	0.8	108
9	Functional ecology of aquatic phagotrophic protists – Concepts, limitations, and perspectives. European Journal of Protistology, 2016, 55, 50-74.	0.5	103
10	Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodiversity and Conservation, 2008, 17, 243-259.	1.2	94
11	Functional diversity of aquatic ciliates. European Journal of Protistology, 2017, 61, 331-358.	0.5	86
12	Interactive effect of temperature and food concentration on growth rate: A test case using the small freshwater ciliate <i>Urotricha farcta</i> . Limnology and Oceanography, 2002, 47, 1447-1455.	1.6	69
13	The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuwenhoek, 2002, 81, 327-341.	0.7	69
14	Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnology and Oceanography, 2006, 51, 1708-1715.	1.6	67
15	Ecological Characteristics of Autotrophic Picoplankton in a Prealpine Lake. International Review of Hydrobiology, 1991, 76, 493-504.	0.6	62
16	Freshwater ciliates as ecophysiological model organisms – lessons from Daphnia, major achievements, and future perspectives. Archiv FA¼r Hydrobiologie, 2006, 167, 371-402.	1.1	60
17	Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. Journal of Microbiological Methods, 2003, 55, 361-370.	0.7	49
18	Shortâ€ŧerm temperature change may impact freshwater carbon flux: a microbial perspective. Global Change Biology, 2008, 14, 2823-2838.	4.2	47

THOMAS WEISSE

#	Article	IF	CITATIONS
19	The Microbial Food Web and its Sensitivity to Eutrophication and Contaminant Enrichment: A Cross-system Overview. International Review of Hydrobiology, 1991, 76, 327-337.	0.6	45
20	Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance. Hydrobiologia, 1990, 191, 111-122.	1.0	44
21	Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes. European Journal of Protistology, 2013, 49, 255-271.	0.5	42
22	Growth and production of heterotrophic nanoflagellates in a meso-eutrophic lake. Journal of Plankton Research, 1997, 19, 703-722.	0.8	39
23	Ciliates and the Rare Biosphere—Community Ecology and Population Dynamics. Journal of Eukaryotic Microbiology, 2014, 61, 419-433.	0.8	38
24	Direct and indirect impact of two common rotifer species (Keratella spp.) on two abundant ciliate species (Urotricha furcata , Balanion planctonicum). Freshwater Biology, 2002, 47, 53-64.	1.2	37
25	Genetic, Morphological, and Ecological Diversity of Spatially Separated Clones of <i>Meseres corlissi</i> Petz & Foissner, 1992 (Ciliophora, Spirotrichea). Journal of Eukaryotic Microbiology, 2008, 55, 257-270.	0.8	35
26	Pronounced ecophysiological clonal differences of two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium lacustris (Oligotrichida), challenge the morphospecies concept. Journal of Plankton Research, 2006, 28, 55-63.	0.8	34
27	The most acidified Austrian lake in comparison to a neutralized mining lake. Limnologica, 2011, 41, 303-315.	0.7	34
28	Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance. , 1990, , 111-122.		31
29	Enumeration of small ciliates in culture by flow cytometry and nucleic acid staining. Journal of Microbiological Methods, 2002, 49, 173-182.	0.7	30
30	Phytoplankton response to short-term temperature and nutrient changes. Limnologica, 2016, 59, 78-89.	0.7	29
31	High diversity in Keratella cochlearis (Rotifera, Monogononta): morphological and genetic evidence. Hydrobiologia, 2017, 796, 145-159.	1.0	25
32	Do current European lake monitoring programmes reliably estimate phytoplankton community changes?. Hydrobiologia, 2018, 824, 143-162.	1.0	23
33	Pelagic Microbes - Protozoa and the Microbial Food Web. , 0, , 417-460.		22
34	Moderate weather extremes alter phytoplankton diversity—A microcosm study. Freshwater Biology, 2018, 63, 1211-1224.	1.2	21
35	Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. Journal of Plankton Research, 1994, 16, 391-401.	0.8	20
36	Combined stress effect of pH and temperature narrows the niche width of flagellates in acid mining lakes. Journal of Plankton Research, 2011, 33, 1023-1032.	0.8	20

THOMAS WEISSE

#	Article	IF	CITATIONS
37	Photosynthetic and growth response of freshwater picocyanobacteria are strain-specific and sensitive to photoacclimation. Journal of Plankton Research, 2009, 31, 349-357.	0.8	19
38	A paleolimnological perspective on aquatic biodiversity in Austrian mountain lakes. Aquatic Sciences, 2015, 77, 59-69.	0.6	19
39	Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges. Journal of Eukaryotic Microbiology, 2022, 69, e12879.	0.8	19
40	Significance and fate of bacterial production in oligotrophic lakes in British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 96-105.	0.7	18
41	Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes. Limnologica, 2010, 40, 161-166.	0.7	18
42	Significance of Heterotrophic Nanoflagellates and Ciliates in Large Lakes: Evidence from Lake Constance. Brock/Springer Series in Contemporary Bioscience, 1990, , 540-555.	0.3	18
43	Bromeliothrix metopoides, a boom and bust ciliate (Ciliophora, Colpodea) from tank bromeliads. European Journal of Protistology, 2013, 49, 406-419.	0.5	17
44	Multiple environmental stressors confine the ecological niche of the rotifer <i>Cephalodella acidophila</i> . Freshwater Biology, 2013, 58, 1008-1015.	1.2	17
45	Ciliates $\hat{a} \in \mathbb{C}^{n}$ Protists with complex morphologies and ambiguous early fossil record. Marine Micropaleontology, 2015, 119, 1-6.	0.5	17
46	Phytoplankton response to the summer 2015 heat wave – a case study from prealpine Lake Mondsee, Austria. Inland Waters, 2017, 7, 88-99.	1.1	17
47	Relations among the components of autotrophic and heterotrophic plankton during the seasonal cycle 1987 in Lake Constance. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1991, 24, 831-836.	0.1	14
48	Functional Ecology of Two Contrasting Freshwater Ciliated Protists in Relation to Temperature. Journal of Eukaryotic Microbiology, 2021, 68, e12823.	0.8	14
49	The outcome of competition between the two chrysomonads Ochromonas sp. and Poterioochromonas malhamensis depends on pH. European Journal of Protistology, 2011, 47, 79-85.	0.5	12
50	TemperatureÂ×Âlight interaction and tolerance of high water temperature in the planktonic freshwater flagellatesCryptomonas(Cryptophyceae) andDinobryon(Chrysophyceae). Journal of Phycology, 2019, 55, 404-414.	1.0	11
51	Title is missing!. Water, Air and Soil Pollution, 2002, 2, 191-210.	0.8	10
52	Life history traits and demographic parameters in the Keratella cochlearis (Rotifera, Monogononta) species complex. Hydrobiologia, 2018, 811, 325-338.	1.0	10
53	Picoplankton feeding by the ciliate Vorticella similis in comparison to other peritrichs emphasizes their significance in the water purification process. Ecological Indicators, 2021, 121, 106992.	2.6	10
54	Cephalodella acidophila n. sp. (Monogononta: Notommatidae), a new rotifer species from highly acidic mining lakes. Zootaxa, 2011, 2939, 50.	0.2	10

THOMAS WEISSE

#	Article	IF	CITATIONS
55	Functional Ecology of the Ciliate Glaucomides bromelicola , and Comparison with the Sympatric Species Bromeliothrix metopoides. Journal of Eukaryotic Microbiology, 2013, 60, 578-587.	0.8	9
56	Ciliates in Planktonic Food Webs: Communication and Adaptive Response. , 2016, , 351-372.		9
57	Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 2020, 10, 2781.	1.6	9
58	Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean. Scientific Reports, 2022, 12, .	1.6	7
59	Rapid detection and quantification of the potentially toxic cyanobacterium Planktothrix rubescens by in-vivo fluorometry and flow cytometry. Water Research, 2018, 138, 234-240.	5.3	6
60	The ecological significance of intraspecific variation among freshwater ciliates. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2002, 28, 1880-1884.	0.1	4
61	First study on the male inducing signal in Keratella cochlearis: Crowding is the key. Limnologica, 2019, 77, 125688.	0.7	4
62	Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis. Journal of Microbiology, 2020, 58, 268-278.	1.3	4
63	Container volume may affect growth rates of ciliates and clearance rates of their microcrustacean predators in microcosm experiments. Journal of Plankton Research, 2021, 43, 288-299.	0.8	4
64	Living on the edge: reproduction, dispersal potential, maternal effects and local adaptation in aquatic, extremophilic invertebrates. Aquatic Sciences, 2019, 81, 1.	0.6	3
65	Live sorting and survival of unstained and DAPI-stained ciliates by flow cytometry. Archiv Für Hydrobiologie, 2003, 157, 173-184.	1.1	1
66	Long-term acclimation of growth rates in the oligotrich freshwater ciliate <i>Meseres corlissi</i> . Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2008, 30, 218-222.	0.1	1
67	Editorial. European Journal of Protistology, 2016, 55, 1.	0.5	1
68	Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Topics in Biodiversity and Conservation, 2007, , 9-25.	0.3	1
69	The European Journal of Protistology – Changes, chances and challenges. European Journal of Protistology, 2009, 45, 163-164.	0.5	Ο
70	Editorial. European Journal of Protistology, 2012, 48, 95.	0.5	0
71	Editorial. European Journal of Protistology, 2015, 51, A1-A2.	0.5	0
72	Editorial. European Journal of Protistology, 2018, 66, iii-iv.	0.5	0

#	Article	IF	CITATIONS
73	Wilhelm Foissner and the European Journal of Protistology. European Journal of Protistology, 2020, 76, 125739.	0.5	0