
Nicoletta Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5280240/publications.pdf Version: 2024-02-01

NICOLETTA FEDDADI

#	Article	IF	CITATIONS
1	Aspartate \hat{l}^2 -hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF11±/GSK31² crosstalk. Carcinogenesis, 2020, 41, 1246-1252.	2.8	16
2	Evaluation of Glycosylated PTGS2 in Colorectal Cancer for NSAIDS-Based Adjuvant Therapy. Cells, 2020, 9, 683.	4.1	11
3	Aspartate-β-Hydroxylase: A Promising Target to Limit the Local Invasiveness of Colorectal Cancer. Cancers, 2020, 12, 971.	3.7	9
4	Human Gut-Associated Natural Killer Cells in Health and Disease. Frontiers in Immunology, 2019, 10, 961.	4.8	101
5	Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2019, 20, 6091.	4.1	10
6	Specific ADAM10 inhibitors localize in exosome-like vesicles released by Hodgkin lymphoma and stromal cells and prevent sheddase activity carried to bystander cells. OncoImmunology, 2018, 7, e1421889.	4.6	28
7	Prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2), a complex target for colorectal cancer prevention and therapy. Translational Research, 2018, 196, 42-61.	5.0	30
8	A hnRNP K–AR-Related Signature Reflects Progression toward Castration-Resistant Prostate Cancer. International Journal of Molecular Sciences, 2018, 19, 1920.	4.1	19
9	Zoledronate can induce colorectal cancer microenvironment expressing BTN3A1 to stimulate effector Î ³ δT cells with antitumor activity. Oncolmmunology, 2017, 6, e1278099.	4.6	62
10	The ErbB family and androgen receptor signaling are targets ofÂCelecoxib in prostate cancer. Cancer Letters, 2017, 400, 9-17.	7.2	29
11	Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Communication and Signaling, 2017, 15, 51.	6.5	29
12	Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. <scp>PARP</scp> â€1: New player in tumor progression. International Journal of Cancer, 2015, 137, 1574-1586.	5.1	15
13	Celecoxib increases EGF signaling in colon tumor associated fibroblasts, modulating EGFR expression and degradation. Oncotarget, 2015, 6, 12310-12325.	1.8	20
14	Glycogen Synthase Kinase 3 Regulates Cell Death and Survival Signaling in Tumor Cells under Redox Stress. Neoplasia, 2014, 16, 710-722.	5.3	19
15	Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Letters, 2014, 352, 152-159.	7.2	86
16	Prostate cancer: Prognostic significance of the association of heterogeneous nuclear ribonucleoprotein K and androgen receptor expression. International Journal of Oncology, 2014, 44, 1589-1598.	3.3	24
17	The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production. Journal of Translational Medicine, 2013, 11, 108.	4.4	136
18	Celecoxib induces proliferation and Amphiregulin production in colon subepithelial myofibroblasts, activating erk1–2 signaling in synergy with EGFR. Cancer Letters, 2013, 328, 73-82.	7.2	22

NICOLETTA FERRARI

#	Article	IF	CITATIONS
19	Impact of CXCL1 overexpression on growth and invasion of prostate cancer cell. Prostate, 2013, 73, 941-951.	2.3	21
20	Androgen Receptor Activity Is Affected by Both Nuclear Matrix Localization and the Phosphorylation Status of the Heterogeneous Nuclear Ribonucleoprotein K in Anti-Androgen-Treated LNCaP Cells. PLoS ONE, 2013, 8, e79212.	2.5	17
21	Effects of polyphenol extract from olive pomace on anoxia-induced endothelial dysfunction. Microvascular Research, 2012, 83, 281-289.	2.5	49
22	Xanthohumol Impairs Human Prostate Cancer Cell Growth and Invasion and Diminishes the Incidence and Progression of Advanced Tumors in TRAMP Mice. Molecular Medicine, 2012, 18, 1292-1302.	4.4	63
23	Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/β atenin signaling in prostate cancer cells. International Journal of Cancer, 2012, 131, 582-590.	5.1	58
24	The AKT/NF-ήB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. Biochemical Pharmacology, 2012, 83, 1634-1642.	4.4	57
25	Androgen receptor and heterogeneous nuclear ribonucleoprotein K colocalize in the nucleoplasm and are modulated by bicalutamide and 4â€hydroxyâ€tamoxifen in prostatic cancer cell lines. Prostate, 2011, 71, 1466-1479.	2.3	12
26	Diet-Derived Phytochemicals: From Cancer Chemoprevention to Cardio-Oncological Prevention. Current Drug Targets, 2011, 12, 1909-1924.	2.1	36
27	Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I. Experimental Cell Research, 2010, 316, 789-799.	2.6	15
28	Angioprevention with fenretinide: Targeting angiogenesis in prevention and therapeutic strategies. Critical Reviews in Oncology/Hematology, 2010, 75, 2-14.	4.4	39
29	The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3β pathway and β-catenin stability. Molecular Cancer, 2010, 9, 142.	19.2	40
30	Heterogeneous nuclear ribonucleoprotein K: altered pattern of expression associated with diagnosis and prognosis of prostate cancer. British Journal of Cancer, 2009, 100, 1608-1616.	6.4	60
31	Novel antivascular efficacy of metronomic docetaxel therapy in prostate cancer: hnRNP K as a player. International Journal of Cancer, 2009, 124, 2989-2996.	5.1	42
32	Role of MT1-MMP in the osteogenic differentiation. Bone, 2009, 44, 251-265.	2.9	36
33	Angiogenesis Inhibition: State of the Art, Forgotten Strategies and New Perspectives in Cancer Therapy Reviews, 2009, 5, 203-216.	0.3	1
34	Anti-angiogenic properties of Chemopreventive Drugs: Fenretinide as a Prototype Recent Results in Cancer Research, 2009, 181, 71-76.	1.8	19
35	Procollagen I COOH-terminal fragment induces VEGF-A and CXCR4 expression in breast carcinoma cells. Experimental Cell Research, 2008, 314, 2289-2298.	2.6	20
36	Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-ÂB and p53 modulation. Molecular Cancer Therapeutics, 2008, 7, 2692-2702.	4.1	73

NICOLETTA FERRARI

#	Article	IF	CITATIONS
37	Identification of Genes Selectively Regulated by IFNs in Endothelial Cells. Journal of Immunology, 2007, 178, 1122-1135.	0.8	152
38	Molecular Pathways for Cancer Angioprevention: Fig. 1 Clinical Cancer Research, 2007, 13, 4320-4325.	7.0	48
39	AKT/NFâ€₽B inhibitor xanthohumol targets cell growth and angiogenesis in hematologic malignancies. Cancer, 2007, 110, 2007-2011.	4.1	72
40	Inflammatory angiogenesis as a target for prevention and therapy: Kaposi's sarcoma and HIV tat as models. Retrovirology, 2006, 3, 1.	2.0	1
41	Biological assays and genomic analysis reveal lipoic acid modulation of endothelial cell behavior and gene expression. Carcinogenesis, 2006, 28, 1008-1020.	2.8	28
42	The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-ÂB pathway. Carcinogenesis, 2006, 28, 404-413.	2.8	59
43	Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NFâ€₽̂B and Akt as targets. FASEB Journal, 2006, 20, 527-529.	0.5	166
44	Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: Microarray gene expression analyses. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 591, 198-211.	1.0	25
45	The Transforming Growth Factor-Î ² Family Members Bone Morphogenetic Protein-2 and Macrophage Inhibitory Cytokine-1 as Mediators of the Antiangiogenic Activity of N-(4-Hydroxyphenyl)Retinamide. Clinical Cancer Research, 2005, 11, 4610-4619.	7.0	72
46	Kaposi's Sarcoma and HIV-Tat: Challenges to Antiangiogenesis Research. Retrovirology, 2005, 2, S41.	2.0	0
47	Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. Cancer Detection and Prevention, 2003, 27, 229-238.	2.1	62
48	Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Therapy, 2003, 10, 647-656.	4.5	82
49	DLXgenes as targets ofALL-1:DLX2,3,4 down-regulation in t(4;11) acute lymphoblastic leukemias. Journal of Leukocyte Biology, 2003, 74, 302-305.	3.3	18
50	Antiangiogenic activity of chemopreventive drugs. International Journal of Biological Markers, 2003, 18, 70-74.	1.8	26
51	Induction of apoptosis by fenretinide in tumor cell lines correlates with DLX2, DLX3 and DLX4 gene expression. Oncology Reports, 2003, 10, 973-7.	2.6	10
52	Inhibition of Kaposi's sarcoma in vivo by fenretinide. Clinical Cancer Research, 2003, 9, 6020-9.	7.0	35
53	Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB Journal, 2002, 16, 1-17.	0.5	164
54	â€~Angioprevention': angiogenesis is a common and key target for cancer chemopreventive agents. FASEB Journal, 2002, 16, 2-14.	0.5	309

NICOLETTA FERRARI

#	Article	IF	CITATIONS
55	The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity. International Journal of Cancer, 2000, 87, 336-342.	5.1	245
56	Down-regulation of thediphthamide biosynthesis protein 2-like gene during retinoid-induced differentiation and apoptosis: Implications against its tumor-suppressor activity. International Journal of Cancer, 2000, 88, 356-362.	5.1	3
57	Hyperplasia and impaired involution in the mammary gland of transgenic mice expressing human FGF4. Oncogene, 2000, 19, 6007-6014.	5.9	10
58	Tissue inhibitors of metalloproteases: regulation and biological activities. Clinical and Experimental Metastasis, 2000, 18, 111-120.	3.3	133
59	The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmpâ€9) activity. International Journal of Cancer, 2000, 87, 336-342.	5.1	4
60	Down-regulation of DPH2L gene during cellular differentiation /apoptosis: Use of mRNA differential display. Science Bulletin, 1999, 44, 496-503.	1.7	0
61	Inhibition of cancer cell growth by all-trans retinoic acid and its analog N-(4-hydroxyphenyl) retinamide: a possible mechanism of actionvia regulation of retinoid receptors expression. , 1998, 78, 248-254.		38
62	Retinoic Acid Receptor γ1 (RARγ ₁) Levels Control RARβ ₂ Expression in SK-N-BE2(c) Neuroblastoma Cells and Regulate a Differentiation-Apoptosis Switch. Molecular and Cellular Biology, 1998, 18, 6482-6492.	2.3	31
63	[5] Use of quantitative polymerase chain reaction to study retinoid receptor expression. Methods in Enzymology, 1997, 282, 48-64.	1.0	5
64	A Retinoic Acid Resistant HL-60 Cell Clone Sensitive to N-(4-hydroxyphenyl) Retinamide-Mediated Clonal Growth Inhibition. Leukemia and Lymphoma, 1995, 17, 155-161.	1.3	14
65	DISTRIBUTION OF RETINOIC ACID RECEPTOR-ALPHA, RECEPTOR-BETA AND RECEPTOR-GAMMA MESSENGER-RNAS IN NEUROBLASTOMA-DERIVED CELL-LINES AND IN FRESH TUMORS. International Journal of Oncology, 1994, 5, 1019-22.	3.3	1
66	An Improved RT-PCR Protocol for the Quantitation of Human Retinoic Acid Receptor RNA. Experimental Cell Research, 1994, 211, 121-126.	2.6	8
67	Regulation of plasma retinol binding protein secretion in human HepG2 cells. Experimental Cell Research, 1992, 200, 467-472.	2.6	17
68	Interaction retinol-chromatin: an analysis of DNA from vitamin A-treated V79 Chinese hamster cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1007, 30-35.	2.4	2
69	Nucleosomal repeat length in active and inactive genes. FEBS Letters, 1987, 225, 120-122.	2.8	6
70	Nucleosomal structure as probed by H3 histone thiol reactivity. Cell Biophysics, 1987, 10, 1-13.	0.4	3
71	Effects of retinol on chromatin structure. FEBS Journal, 1985, 151, 305-310.	0.2	10
72	Effects of vitamin E on liver DNA. Cancer Letters, 1984, 25, 163-170.	7.2	8

#	Article	IF	CITATIONS
73	Induction of apoptosis by fenretinide in tumor cell lines correlates with DLX2, DLX3 and DLX4 gene expression. Oncology Reports, 0, , .	2.6	4