Chunying Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5280196/publications.pdf

Version: 2024-02-01

463 papers 40,687 citations

107 h-index 182 g-index

497 all docs 497 docs citations

497 times ranked

41680 citing authors

#	Article	IF	CITATIONS
1	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
2	Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small, 2011, 7, 1322-1337.	10.0	975
3	Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168, 176-185.	0.8	973
4	Mesoporous Silicaâ€Coated Gold Nanorods as a Lightâ€Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials, 2012, 24, 1418-1423.	21.0	881
5	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	7.1	839
6	Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006, 163, 109-120.	0.8	825
7	Understanding the Toxicity of Carbon Nanotubes. Accounts of Chemical Research, 2013, 46, 702-713.	15.6	623
8	Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31, 7606-7619.	11.4	613
9	Nearâ€Infrared Lightâ€Mediated Nanoplatforms for Cancer Thermoâ€Chemotherapy and Optical Imaging. Advanced Materials, 2013, 25, 3869-3880.	21.0	580
10	Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods. Journal of the American Chemical Society, 2014, 136, 7317-7326.	13.7	569
11	Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials, 2011, 32, 1139-1147.	11.4	531
12	Bismuth Sulfide Nanorods as a Precision Nanomedicine for <i>in Vivo</i> Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 2015, 9, 696-707.	14.6	503
13	Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. Nano Letters, 2011, 11, 772-780.	9.1	475
14	The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials, 2012, 33, 402-411.	11.4	444
15	Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature Communications, 2018, 9, 129.	12.8	414
16	The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30, 611-621.	11.4	388
17	Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 2008, 254, 82-90.	4.2	386
18	Safety of Nanoparticles in Medicine. Current Drug Targets, 2015, 16, 1671-1681.	2.1	384

#	Article	IF	Citations
19	The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. Advanced Materials, 2019, 31, e1805740.	21.0	355
20	Core–Shell Upconversion Nanoparticle@Metal–Organic Framework Nanoprobes for Luminescent/Magnetic Dualâ€Mode Targeted Imaging. Advanced Materials, 2015, 27, 4075-4080.	21.0	348
21	Cytotoxic Potential of Silver Nanoparticles. Yonsei Medical Journal, 2014, 55, 283.	2.2	340
22	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	8.2	336
23	Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 94-96.	3.0	322
24	Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicology Letters, 2008, 183, 72-80.	0.8	310
25	Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS Nano, 2018, 12, 12380-12392.	14.6	292
26	Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment. Nano Letters, 2012, 12, 2003-2012.	9.1	282
27	Multihydroxylated [Gd@C82(OH)22]nNanoparticles:Â Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Letters, 2005, 5, 2050-2057.	9.1	281
28	Smart Albuminâ€Biomineralized Nanocomposites for Multimodal Imaging and Photothermal Tumor Ablation. Advanced Materials, 2015, 27, 3874-3882.	21.0	278
29	Circumventing Tumor Resistance to Chemotherapy by Nanotechnology. Methods in Molecular Biology, 2010, 596, 467-488.	0.9	259
30	Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. Journal of the American Chemical Society, 2011, 133, 8617-8624.	13.7	258
31	Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2844-2855.	2.4	257
32	Facet Energy <i>versus </i> Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano, 2016, 10, 10436-10445.	14.6	247
33	Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano, 2015, 9, 6532-6547.	14.6	246
34	Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicology Letters, 2007, 175, 102-110.	0.8	243
35	Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. ACS Applied Materials & Size-Dependent & Size-De	8.0	243
36	Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes. Journal of the American Chemical Society, 2013, 135, 17359-17368.	13.7	239

#	Article	IF	Citations
37	Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7449-7454.	7.1	233
38	Nano–bio effects: interaction of nanomaterials with cells. Nanoscale, 2013, 5, 3547.	5.6	223
39	Tailoring Nanomaterials for Targeting Tumorâ€Associated Macrophages. Advanced Materials, 2019, 31, e1808303.	21.0	223
40	Endoplasmic Reticulum Stress Induced by Zinc Oxide Nanoparticles Is an Earlier Biomarker for Nanotoxicological Evaluation. ACS Nano, 2014, 8, 2562-2574.	14.6	221
41	An Allâ€Organic Semiconductor C ₃ N ₄ /PDINH Heterostructure with Advanced Antibacterial Photocatalytic Therapy Activity. Advanced Materials, 2019, 31, e1901965.	21.0	215
42	Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing <i>Caenorhabditis elegans</i> as a Model Organism. Nano Letters, 2011, 11, 3174-3183.	9.1	212
43	Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics, 2012, 2, 238-250.	10.0	212
44	Review of Research on Template Methods in Preparation of Nanomaterials. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	212
45	The Nano–Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions. Accounts of Chemical Research, 2019, 52, 1507-1518.	15.6	211
46	Imagingâ€Guided Combined Photothermal and Radiotherapy to Treat Subcutaneous and Metastatic Tumors Using Iodineâ€131â€Doped Copper Sulfide Nanoparticles. Advanced Functional Materials, 2015, 25, 4689-4699.	14.9	207
47	Defectâ€Rich Adhesive Molybdenum Disulfide/rGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application. Advanced Materials, 2020, 32, e2005423.	21.0	207
48	Synthesis of Pt Hollow Nanodendrites with Enhanced Peroxidaseâ€Like Activity against Bacterial Infections: Implication for Wound Healing. Advanced Functional Materials, 2018, 28, 1801484.	14.9	205
49	Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C ₈₂ (OH) ₂₂ and its implication for de novo design of nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15431-15436.	7.1	200
50	Fate and Toxicity of Metallic and Metalâ€Containing Nanoparticles for Biomedical Applications. Small, 2011, 7, 2965-2980.	10.0	199
51	Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. Journal of Hazardous Materials, 2019, 363, 138-151.	12.4	199
52	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€Sensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	14.9	194
53	Gold Nanorods Based Platforms for Light-Mediated Theranostics. Theranostics, 2013, 3, 223-238.	10.0	189
54	Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano, 2016, 10, 8690-8699.	14.6	188

#	Article	IF	CITATIONS
55	Using Hollow Carbon Nanospheres as a Light-Induced Free Radical Generator To Overcome Chemotherapy Resistance. Journal of the American Chemical Society, 2015, 137, 1947-1955.	13.7	182
56	The effect of $Gd@C82(OH)22$ nanoparticles on the release of Th1/Th2 cytokines and induction of TNF- $\hat{l}\pm$ mediated cellular immunity. Biomaterials, 2009, 30, 3934-3945.	11.4	177
57	Multimodal Imaging-Guided Antitumor Photothermal Therapy and Drug Delivery Using Bismuth Selenide Spherical Sponge. ACS Nano, 2016, 10, 9646-9658.	14.6	175
58	Proteinâ€Nanoreactorâ€Assisted Synthesis of Semiconductor Nanocrystals for Efficient Cancer Theranostics. Advanced Materials, 2016, 28, 5923-5930.	21.0	175
59	The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials, 2014, 35, 1597-1607.	11.4	174
60	Rapid Degradation and High Renal Clearance of Cu ₃ BiS ₃ Nanodots for Efficient Cancer Diagnosis and Photothermal Therapy <i>in Vivo</i> . ACS Nano, 2016, 10, 4587-4598.	14.6	173
61	Poly(Vinylpyrollidone)―and Selenocysteineâ€Modified Bi ₂ Se ₃ Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Advanced Materials, 2017, 29, 1701268.	21.0	171
62	Bifunctional Platinated Nanoparticles for Photoinduced Tumor Ablation. Advanced Materials, 2016, 28, 10155-10164.	21.0	170
63	Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Research, 2018, 11, 3294-3305.	10.4	170
64	Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism. ACS Applied Materials & Diversariances, 2018, 10, 8443-8450.	8.0	165
65	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	12.8	164
66	The Roles of Serum Selenium and Selenoproteins on Mercury Toxicity in Environmental and Occupational Exposure. Environmental Health Perspectives, 2006, 114, 297-301.	6.0	163
67	Carbonâ€Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1800525.	7.6	161
68	Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials, 2011, 32, 8291-8303.	11.4	160
69	The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways. Biomaterials, 2012, 33, 6933-6942.	11.4	160
70	Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials, 2012, 33, 1627-1639.	11.4	159
71	Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology, 2015, 9, 181-189.	3.0	159
72	The nano-plasma interface: Implications of the protein corona. Colloids and Surfaces B: Biointerfaces, 2014, 124, 17-24.	5.0	155

#	Article	IF	CITATIONS
73	Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nature Nanotechnology, 2021, 16, 708-716.	31.5	153
74	Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochemical Pharmacology, 2006, 71, 872-881.	4.4	152
75	Bacteria-Activated Theranostic Nanoprobes against Methicillin-Resistant <i>Staphylococcus aureus</i> Infection. ACS Nano, 2017, 11, 4428-4438.	14.6	152
76	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	10.0	152
77	Bifunctional Tellurium Nanodots for Photo-Induced Synergistic Cancer Therapy. ACS Nano, 2017, 11, 10012-10024.	14.6	151
78	Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials, 2015, 16, 034610.	6.1	149
79	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
80	Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. ACS Nano, 2010, 4, 2773-2783.	14.6	148
81	Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents. ACS Nano, 2015, 9, 12425-12435.	14.6	145
82	Designing Stimuliâ€Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Advanced Materials, 2020, 32, e2000055.	21.0	143
83	Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale, 2013, 5, 8384.	5.6	141
84	Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials, 2014, 35, 8374-8384.	11.4	140
85	Gdâ€Hybridized Plasmonic Auâ€Nanocomposites Enhanced Tumorâ€Interior Drug Permeability in Multimodal Imagingâ€Guided Therapy. Advanced Materials, 2016, 28, 8950-8958.	21.0	138
86	Photoacoustic Imaging Guided Nearâ€Infrared Photothermal Therapy Using Highly Waterâ€Dispersible Singleâ€Walled Carbon Nanohorns as Theranostic Agents. Advanced Functional Materials, 2014, 24, 6621-6628.	14.9	137
87	Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy. PLoS ONE, 2015, 10, e0127174.	2.5	136
88	Towards understanding of nanoparticle–protein corona. Archives of Toxicology, 2015, 89, 519-539.	4.2	135
89	Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.	11.9	135
90	A Versatile Imaging and Therapeutic Platform Based on Dual-Band Luminescent Lanthanide Nanoparticles toward Tumor Metastasis Inhibition. ACS Nano, 2016, 10, 2766-2773.	14.6	131

#	Article	IF	Citations
91	Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer. Environmental Science & Env	10.0	131
92	Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nature Nanotechnology, 2019, 14, 719-727.	31.5	131
93	Novel Insights into Combating Cancer Chemotherapy Resistance Using a Plasmonic Nanocarrier: Enhancing Drug Sensitiveness and Accumulation Simultaneously with Localized Mild Photothermal Stimulus of Femtosecond Pulsed Laser. Advanced Functional Materials, 2014, 24, 4229-4239.	14.9	130
94	Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8436-8442.	8.0	130
95	Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale, 2015, 7, 8607-8618.	5.6	128
96	Quantitative Analysis of Metal Impurities in Carbon Nanotubes: Efficacy of Different Pretreatment Protocols for ICPMS Spectroscopy. Analytical Chemistry, 2008, 80, 9426-9434.	6.5	125
97	Chiral Surface of Nanoparticles Determines the Orientation of Adsorbed Transferrin and Its Interaction with Receptors. ACS Nano, 2017, 11, 4606-4616.	14.6	125
98	Walking the line: The fate of nanomaterials at biological barriers. Biomaterials, 2018, 174, 41-53.	11.4	125
99	Progress and Prospects of Graphdiyneâ€Based Materials in Biomedical Applications. Advanced Materials, 2019, 31, e1804386.	21.0	124
100	Multiwall Carbon Nanotubes Mediate Macrophage Activation and Promote Pulmonary Fibrosis Through TGFâ€Î²/Smad Signaling Pathway. Small, 2013, 9, 3799-3811.	10.0	121
101	Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials, 2014, 35, 4195-4203.	11.4	121
102	Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials, 2015, 61, 307-315.	11.4	121
103	Morphologically Virusâ€Like Fullerenol Nanoparticles Act as the Dualâ€Functional Nanoadjuvant for HIVâ€1 Vaccine. Advanced Materials, 2013, 25, 5928-5936.	21.0	120
104	Multifunctional Graphdiyne–Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer. Advanced Materials, 2021, 33, e2100556.	21.0	119
105	Inhibition of Tumor Growth by Endohedral Metallofullerenol Nanoparticles Optimized as Reactive Oxygen Species Scavenger. Molecular Pharmacology, 2008, 74, 1132-1140.	2.3	117
106	Fullerene Nanoparticles Selectively Enter Oxidation-Damaged Cerebral Microvessel Endothelial Cells and Inhibit JNK-Related Apoptosis. ACS Nano, 2009, 3, 3358-3368.	14.6	117
107	Silver nanoparticles – wolves in sheep's clothing?. Toxicology Research, 2015, 4, 563-575.	2.1	116
108	Increased Oxidative DNA Damage, as Assessed by Urinary 8-Hydroxy-2′-Deoxyguanosine Concentrations, and Serum Redox Status in Persons Exposed to Mercury. Clinical Chemistry, 2005, 51, 759-767.	3.2	113

#	Article	IF	CITATIONS
109	The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Materials, 2012, 4, e32-e32.	7.9	112
110	Understanding the Chemical Nature of Nanoparticle–Protein Interactions. Bioconjugate Chemistry, 2019, 30, 1923-1937.	3.6	109
111	Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Analytical and Bioanalytical Chemistry, 2010, 396, 1105-1114.	3.7	108
112	Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials. Current Drug Metabolism, 2008, 9, 697-709.	1.2	105
113	Blood cadmium, mercury, and lead in children: An international comparison of cities in six European countries, and China, Ecuador, and Morocco. Environment International, 2012, 41, 29-34.	10.0	105
114	Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Scientific Reports, 2012, 2, 847.	3.3	104
115	Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chemical Society Reviews, 2013, 42, 8266.	38.1	104
116	The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology, 2008, 19, 145102.	2.6	103
117	Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicology Letters, 2013, 222, 55-63.	0.8	103
118	Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 136-146.	3.3	101
119	Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington's Disease. ACS Applied Materials & Disease. ACS Applied Materials & Disease. ACS	8.0	101
120	New power of self-assembling carbonic anhydrase inhibitor: Short peptide–constructed nanofibers inspire hypoxic cancer therapy. Science Advances, 2019, 5, eaax0937.	10.3	100
121	Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1997-2008.	8.0	100
122	Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials, 2014, 35, 9833-9843.	11.4	99
123	Selfâ€Assembling Peptideâ€Based Hydrogels for Wound Tissue Repair. Advanced Science, 2022, 9, e2104165.	11.2	99
124	Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. Journal of the American Chemical Society, 2022, 144, 9184-9205.	13.7	98
125	Photogenerated Charge Carriers in Molybdenum Disulfide Quantum Dots with Enhanced Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4858-4866.	8.0	97
126	Immunostimulatory properties and enhanced TNF- \hat{l}_{\pm} mediated cellular immunity for tumor therapy by C ₆₀ (OH) ₂₀ nanoparticles. Nanotechnology, 2009, 20, 415102.	2.6	96

#	Article	IF	Citations
127	Polyhydroxylated Metallofullerenols Stimulate ILâ€1β Secretion of Macrophage through TLRs/MyD88/NFâ€Î³B Pathway and NLRP ₃ Inflammasome Activation. Small, 2014, 10, 2362-2372.	10.0	96
128	Remote Control and Modulation of Cellular Events by Plasmonic Gold Nanoparticles: Implications and Opportunities for Biomedical Applications. ACS Nano, 2017, 11, 2403-2409.	14.6	93
129	Efficient Delivery of Antitumor Drug to the Nuclei of Tumor Cells by Amphiphilic Biodegradable Poly(<scp>L</scp> â€Aspartic Acidâ€ <i>co</i> â€Lactic Acid)/DPPE Coâ€Polymer Nanoparticles. Small, 2012, 8, 1596-1606.	10.0	91
130	Hypoxia-Triggered Self-Assembly of Ultrasmall Iron Oxide Nanoparticles to Amplify the Imaging Signal of a Tumor. Journal of the American Chemical Society, 2021, 143, 1846-1853.	13.7	91
131	Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon, 2010, 48, 2231-2243.	10.3	90
132	Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 14014-14018.	13.8	89
133	Photothermal conversion-coordinated Fenton-like and photocatalytic reactions of Cu2-xSe-Au Janus nanoparticles for tri-combination antitumor therapy. Biomaterials, 2020, 255, 120167.	11.4	89
134	A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascadeâ€Catalytic Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 25328-25338.	13.8	88
135	Precision Nanomedicine Development Based on Specific Opsonization of Human Cancer Patient-Personalized Protein Coronas. Nano Letters, 2019, 19, 4692-4701.	9.1	87
136	Immobilized Ferrous Ion and Glucose Oxidase on Graphdiyne and Its Application on One-Step Glucose Detection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2647-2654.	8.0	86
137	Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale, 2021, 13, 8806-8816.	5.6	86
138	Exploiting the 21st amino acidâ€"purifying and labeling proteins by selenolate targeting. Nature Methods, 2004, 1, 61-66.	19.0	85
139	Right or Left: The Role of Nanoparticles in Pulmonary Diseases. International Journal of Molecular Sciences, 2014, 15, 17577-17600.	4.1	85
140	Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Analytical Chemistry, 2018, 90, 589-614.	6.5	85
141	Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicology Letters, 2011, 207, 73-81.	0.8	84
142	Gd-Dots with Strong Ligand–Water Interaction for Ultrasensitive Magnetic Resonance Renography. ACS Nano, 2017, 11, 3642-3650.	14.6	84
143	Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nature Communications, 2018, 9, 4861.	12.8	84
144	Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance. ACS Nano, 2019, 13, 11488-11499.	14.6	84

#	Article	IF	CITATIONS
145	Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle–Cell Membrane Interface. Nano Letters, 2019, 19, 8-18.	9.1	84
146	Immunological Responses Induced by Blood Protein Coronas on Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2020, 14, 5529-5542.	14.6	82
147	Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials, 2014, 35, 4667-4677.	11.4	81
148	Biocompatible PEGylated bismuth nanocrystals: "All-in-one―theranostic agent with triple-modal imaging and efficient inÂvivo photothermal ablation of tumors. Biomaterials, 2017, 141, 284-295.	11.4	81
149	Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Advances, 2015, 5, 73963-73973.	3.6	80
150	Graphdiyne:Structure of Fluorescent Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 16712-16716.	13.8	79
151	Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials, 2013, 34, 7117-7126.	11.4	77
152	Organic Selenium Supplementation Increases Mercury Excretion and Decreases Oxidative Damage in Long-Term Mercury-Exposed Residents from Wanshan, China. Environmental Science & Eamp; Technology, 2012, 46, 11313-11318.	10.0	76
153	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	3.0	75
154	Role of nanotechnology in HIV/AIDS vaccine development. Advanced Drug Delivery Reviews, 2016, 103, 76-89.	13.7	75
155	Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today, 2020, 34, 100907.	11.9	75
156	Fullerene derivatives protect endothelial cells against NO-induced damage. Nanotechnology, 2009, 20, 225103.	2.6	74
157	Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environmental Research, 2013, 125, 75-81.	7.5	73
158	Probing Adsorption Behaviors of BSA onto Chiral Surfaces of Nanoparticles. Small, 2018, 14, e1703982.	10.0	73
159	Potential Health Impact on Mice after Nasal Instillation of Nano-Sized Copper Particles and Their Translocation in Mice. Journal of Nanoscience and Nanotechnology, 2009, 9, 6335-6343.	0.9	72
160	Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology, 2012, 6, 526-542.	3.0	72
161	Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale, 2014, 6, 3670.	5.6	71
162	Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. Nanoscale, 2018, 10, 12639-12649.	5.6	71

#	Article	IF	Citations
163	Gadolinium(III)-Chelated Silica Nanospheres Integrating Chemotherapy and Photothermal Therapy for Cancer Treatment and Magnetic Resonance Imaging. ACS Applied Materials & Enterfaces, 2015, 7, 25014-25023.	8.0	70
164	The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles. Biomaterials, 2011, 32, 4030-4041.	11.4	69
165	Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy. Advanced Functional Materials, 2014, 24, 6922-6932.	14.9	69
166	Design of TPGS-functionalized $Cu < sub > 3 < / sub > BiS < sub > 3 < / sub > nanocrystals with strong absorption in the second near-infrared window for radiation therapy enhancement. Nanoscale, 2017, 9, 8229-8239.$	5.6	69
167	The nano-bio interaction and biomedical applications of carbon nanomaterials. Carbon, 2018, 138, 436-450.	10.3	69
168	Distribution of some rare earth elements and their binding species with proteins in human liver studied by instrumental neutron activation analysis combined with biochemical techniques. Analytica Chimica Acta, 2001, 439, 19-27.	5.4	68
169	Size- and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics, 2015, 7, 516-524.	2.4	68
170	Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small, 2017, 13, 1602133.	10.0	68
171	Tumorâ€Associated Macrophage and Tumorâ€Cell Dually Transfecting Polyplexes for Efficient Interleukinâ€12 Cancer Gene Therapy. Advanced Materials, 2021, 33, e2006189.	21.0	68
172	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	11.9	67
173	Exposure to nickel oxide nanoparticles insinuates physiological, ultrastructural and oxidative damage: A life cycle study on Eisenia fetida. Environmental Pollution, 2019, 254, 113032.	7.5	65
174	Nanotoxicity: A Growing Need for Study in the Endocrine System. Small, 2013, 9, 1654-1671.	10.0	64
175	Gd–Metallofullerenol Nanomaterial Suppresses Pancreatic Cancer Metastasis by Inhibiting the Interaction of Histone Deacetylase 1 and Metastasis-Associated Protein 1. ACS Nano, 2015, 9, 6826-6836.	14.6	64
176	The Underlying Function and Structural Organization of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for Local Immunomodulation. Nano Letters, 2021, 21, 6005-6013.	9.1	63
177	Toxicity of manufactured nanomaterials. Particuology, 2022, 69, 31-48.	3.6	63
178	Multiwall Carbon Nanotubes Directly Promote Fibroblast-Myofibroblast and Epithelial-Mesenchymal Transitions through the Activation of the TGF- \hat{l}^2 /Smad Signaling Pathway. Small, 2015, 11, 446-455.	10.0	62
179	The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant and Soil, 2015, 391, 195-205.	3.7	61
180	Silver nanoparticles impede phorbol myristate acetate-induced monocyte–macrophage differentiation and autophagy. Nanoscale, 2015, 7, 16100-16109.	5.6	61

#	Article	IF	Citations
181	Optimization of Antibacterial Efficacy of Noble-Metal-Based Core–Shell Nanostructures and Effect of Natural Organic Matter. ACS Nano, 2019, 13, 12694-12702.	14.6	61
182	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	14.6	60
183	Engineering a self-navigated MnARK nanovaccine for inducing potent protective immunity against novel coronavirus. Nano Today, 2021, 38, 101139.	11.9	60
184	Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology, 2013, 313, 49-58.	4.2	59
185	Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano, 2019, 13, 8680-8693.	14.6	59
186	MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. Nanoscale, 2019, 11, 17782-17790.	5.6	59
187	The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles. Nanotoxicology, 2012, 6, 562-575.	3.0	58
188	Gold Nanomaterials: Preparation, Chemical Modification, Biomedical Applications and Potential Risk Assessment. Applied Biochemistry and Biotechnology, 2012, 166, 1533-1551.	2.9	58
189	Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Science China Life Sciences, 2020, 63, 1168-1182.	4.9	58
190	Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. Biomaterials, 2020, 244, 119940.	11.4	58
191	Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials, 2018, 167, 205-215.	11.4	57
192	Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)?. Nano Today, 2021, 36, 101037.	11.9	57
193	Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicology Letters, 2010, 199, 288-300.	0.8	56
194	An Experimental and Computational Approach to the Development of ZnO Nanoparticles that are Safe by Design. Small, 2016, 12, 3568-3577.	10.0	56
195	Dynamic intracellular exchange of nanomaterials $\hat{a} \in \mathbb{N}$ protein corona perturbs proteostasis and remodels cell metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	56
196	Advanced nuclear analytical techniques for metalloproteomics. Journal of Analytical Atomic Spectrometry, 2007, 22, 856.	3.0	55
197	Gold Nanomaterials in Consumer Cosmetics Nanoproducts: Analyses, Characterization, and Dermal Safety Assessment. Small, 2016, 12, 5488-5496.	10.0	55
198	Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 3793-3807.	4.9	55

#	Article	IF	Citations
199	The inhibition of metastasis and growth of breast cancer by blocking the NF-κB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials, 2013, 34, 5381-5390.	11.4	53
200	Superstable Magnetic Nanoparticles in Conjugation with Near-Infrared Dye as a Multimodal Theranostic Platform. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4424-4433.	8.0	53
201	Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice. Particle and Fibre Toxicology, 2018, 15, 13.	6.2	53
202	Short Multiwall Carbon Nanotubes Promote Neuronal Differentiation of PC12 Cells via Upâ€Regulation of the Neurotrophin Signaling Pathway. Small, 2013, 9, 1786-1798.	10.0	52
203	Functional Nanomaterials Can Optimize the Efficacy of Vaccines. Small, 2014, 10, 4505-4520.	10.0	52
204	Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology, 2016, 10, 1-11.	3.0	52
205	Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Research, 2015, 8, 4038-4047.	10.4	52
206	Heterojunction of Vertically Arrayed MoS ₂ Nanosheet/N-Doped Reduced Graphene Oxide Enabling a Nanozyme for Sensitive Biomolecule Monitoring. Analytical Chemistry, 2021, 93, 11123-11132.	6.5	52
207	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis. Analytica Chimica Acta, 2003, 485, 131-137.	5.4	51
208	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	6.0	51
209	Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials, 2021, 275, 120951.	11.4	51
210	Understanding Nanomaterial–Liver Interactions to Facilitate the Development of Safer Nanoapplications. Advanced Materials, 2022, 34, e2106456.	21.0	51
211	Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2007, 22, 925.	3.0	50
212	In vivo aggregation-induced transition between T $<$ sub $>$ 1 $<$ /sub $>$ and T $<$ sub $>$ 2 $<$ /sub $>$ relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. Nanoscale, 2017, 9, 3040-3050.	5.6	50
213	Assessment of Air Pollutant PM2.5 Pulmonary Exposure Using a 3D Lung-on-Chip Model. ACS Biomaterials Science and Engineering, 2020, 6, 3081-3090.	5.2	50
214	The Interaction of Serum Proteins with Carbon Nanotubes Depend on the Physicochemical Properties of Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 10102-10110.	0.9	49
215	Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Particle and Fibre Toxicology, 2019, 16, 6.	6.2	49
216	Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core–Shell Nanoparticles. Nano Letters, 2019, 19, 4478-4489.	9.1	49

#	Article	IF	Citations
217	The age of bioinspired molybdenumâ€involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View, 2021, 2, 20200188.	5.3	49
218	Applications and toxicological issues surrounding nanotechnology in the food industry. Pure and Applied Chemistry, 2010, 82, 349-372.	1.9	48
219	Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environmental Pollution, 2014, 192, 204-211.	7.5	48
220	Bacteria-Instructed Click Chemistry between Functionalized Gold Nanoparticles for Point-of-Care Microbial Detection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23093-23101.	8.0	48
221	A General Route to Efficient Functionalization of Silicon Quantum Dots for Highâ€Performance Fluorescent Probes. Small, 2012, 8, 2430-2435.	10.0	47
222	Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. Journal of Polymer Research, 2013, 20, 1.	2.4	46
223	Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicology Letters, 2014, 226, 70-80.	0.8	46
224	Subchronic Toxicity and Cardiovascular Responses in Spontaneously Hypertensive Rats after Exposure to Multiwalled Carbon Nanotubes by Intratracheal Instillation. Chemical Research in Toxicology, 2015, 28, 440-450.	3.3	46
225	Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 945-954.	3.3	46
226	Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Analytical and Bioanalytical Chemistry, 2018, 410, 6051-6066.	3.7	46
227	Identification of target organs of copper nanoparticles with ICP-MS technique. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 599-603.	1.5	45
228	The neurotoxic potential of engineered nanomaterials. NeuroToxicology, 2012, 33, 902-910.	3.0	45
229	Accumulation of mercury, selenium and their binding proteins in porcine kidney and liver from mercury-exposed areas with the investigation of their redox responses. Science of the Total Environment, 2006, 366, 627-637.	8.0	44
230	Chemical reduction of graphene enhances <i>in vivo</i> translocation and photosynthetic inhibition in pea plants. Environmental Science: Nano, 2019, 6, 1077-1088.	4.3	44
231	The Nano–Intestine Interaction: Understanding the Locationâ€Oriented Effects of Engineered Nanomaterials in the Intestine. Small, 2020, 16, e1907665.	10.0	44
232	Scalp hair as a biomarker in environmental and occupational mercury exposed populations: Suitable or not?. Environmental Research, 2008, 107, 39-44.	7.5	43
233	Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans. Biomaterials, 2015, 42, 78-86.	11.4	43
234	Cardiovascular Effects of Pulmonary Exposure to Titanium Dioxide Nanoparticles in ApoE Knockout Mice. Journal of Nanoscience and Nanotechnology, 2013, 13, 3214-3222.	0.9	42

#	Article	IF	Citations
235	Stimulus-responsive gold nanotheranostic platforms for targeting the tumor microenvironment. Nano Today, 2018, 22, 83-99.	11.9	42
236	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	2.7	42
237	Suppressing the Radiation-Induced Corrosion of Bismuth Nanoparticles for Enhanced Synergistic Cancer Radiophototherapy. ACS Nano, 2020, 14, 13016-13029.	14.6	42
238	Subcellular distribution of selenium and Se-containing proteins in human liver. Biochimica Et Biophysica Acta - General Subjects, 1999, 1427, 205-215.	2.4	41
239	Few-Layer Bismuthene for Checkpoint Knockdown Enhanced Cancer Immunotherapy with Rapid Clearance and Sequentially Triggered One-for-All Strategy. ACS Nano, 2020, 14, 15700-15713.	14.6	41
240	Significance and Systematic Analysis of Metallic Impurities of Carbon Nanotubes Produced by Different Manufacturers. Journal of Nanoscience and Nanotechnology, 2011, 11, 2389-2397.	0.9	39
241	Designing Hypoxiaâ€Responsive Nanotheranostic Agents for Tumor Imaging and Therapy. Advanced Healthcare Materials, 2021, 10, e2001277.	7.6	39
242	The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Advances, 2020, 10, 7559-7569.	3.6	38
243	Optimizing Energy Transfer in Nanostructures Enables In Vivo Cancer Lesion Tracking via Nearâ€Infrared Excited Hypoxia Imaging. Advanced Materials, 2020, 32, e1907718.	21.0	38
244	Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics, 2014, 6, 220.	2.4	37
245	Dual-Mode Imaging-Guided Synergistic Chemo- and Magnetohyperthermia Therapy in a Versatile Nanoplatform To Eliminate Cancer Stem Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23497-23507.	8.0	37
246	15 Years of <i>Small</i> : Research Trends in Nanosafety. Small, 2020, 16, e2000980.	10.0	37
247	The Influence on Cell Cycle and Cell Division by Various Cadmiumâ€Containing Quantum Dots. Small, 2013, 9, 2440-2451.	10.0	36
248	From the Cover: Comparative Numerical Modeling of Inhaled Nanoparticle Deposition in Human and Rat Nasal Cavities. Toxicological Sciences, 2016, 152, 284-296.	3.1	36
249	Direct site-specific treatment of skin cancer using doxorubicin-loaded nanofibrous membranes. Science Bulletin, 2018, 63, 92-100.	9.0	36
250	Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS Nano, 2019, 13, 6801-6812.	14.6	36
251	In vivo pharmacokinetic features and biodistribution of star and rod shaped gold nanoparticles by multispectral optoacoustic tomography. RSC Advances, 2015, 5, 7529-7538.	3.6	35
252	Multifunctional near-infrared dye-magnetic nanoparticles forÂbioimaging and cancer therapy. Cancer Letters, 2017, 390, 168-175.	7.2	35

#	Article	IF	Citations
253	Reaction of human macrophages on protein corona covered TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 275-282.	3.3	34
254	A NanoFlareâ€Based Strategy for In Situ Tumor Margin Demarcation and Neoadjuvant Gene/Photothermal Therapy. Small, 2018, 14, e1802745.	10.0	34
255	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence combined with gel filtration chromatography and isoelectric focusing separation. Analyst, The, 2002, 127, 1700-1704.	3.5	33
256	Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80, 2577-2594.	1.9	33
257	Impedance Based Nanotoxicity Assessment of Graphene Nanomaterials at the Cellular and Tissue Level. Analytical Letters, 2012, 45, 272-282.	1.8	33
258	Metabolic Characteristics of 16HBE and A549 Cells Exposed to Different Surface Modified Gold Nanorods. Advanced Healthcare Materials, 2016, 5, 2363-2375.	7.6	33
259	Enhanced anti-tumor efficacy of temozolomide-loaded carboxylated poly(amido-amine) combined with photothermal/photodynamic therapy for melanoma treatment. Cancer Letters, 2018, 423, 16-26.	7.2	33
260	Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 185, 109720.	6.0	33
261	Safety Assessment of Nanomaterials for Antimicrobial Applications. Chemical Research in Toxicology, 2020, 33, 1082-1109.	3.3	33
262	Toxicological and biological effects of nanomaterials. International Journal of Nanotechnology, 2007, 4, 179.	0.2	32
263	Silver nanoparticles induced oxidative and endoplasmic reticulum stresses in mouse tissues: implications for the development of acute toxicity after intravenous administration. Toxicology Research, 2016, 5, 602-608.	2.1	32
264	Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials. Small, 2017, 13, 1602855.	10.0	32
265	Cell membrane based biomimetic nanocomposites for targeted therapy of drug resistant EGFR-mutated lung cancer. Nanoscale, 2019, 11, 19520-19528.	5.6	32
266	Amyloidosis inhibition, a new frontier of the protein corona. Nano Today, 2020, 35, 100937.	11.9	32
267	Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Advanced Drug Delivery Reviews, 2022, 180, 114046.	13.7	32
268	Nanomaterial-based approaches for the detection and speciation of mercury. Analyst, The, 2015, 140, 7841-7853.	3. 5	31
269	Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14703-14720.	4.9	31
270	Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 595-598.	1.5	30

#	Article	IF	CITATIONS
271	Cinnabar is not converted into methylmercury by human intestinal bacteria. Journal of Ethnopharmacology, 2011, 135, 110-115.	4.1	30
272	Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine. ACS Nano, 2020, 14, 14391-14416.	14.6	30
273	Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS Nano, 2020, 14, 12854-12865.	14.6	30
274	Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 2021, 409, 124923.	12.4	30
275	Rapid Synthesis of Graphdiyne Films on Hydrogel at the Superspreading Interface for Antibacteria. ACS Nano, 2022, 16, 11338-11345.	14.6	30
276	Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1531-1549.	3.3	29
277	Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. Journal of Inorganic Biochemistry, 2021, 219, 111454.	3.5	29
278	Immuno Nanoparticles Integrated Electrical Control of Targeted Cancer Cell Development Using Whole Cell Bioelectronic Device. Theranostics, 2014, 4, 919-930.	10.0	28
279	Quantitative Biokinetics and Systemic Translocation of Various Gold Nanostructures Are Highly Dependent on Their Size and Shape. Journal of Nanoscience and Nanotechnology, 2014, 14, 4124-4138.	0.9	28
280	Targeting peptide iRGD-conjugated amphiphilic chitosan-co-PLA/DPPE drug delivery system for enhanced tumor therapy. Journal of Materials Chemistry B, 2014, 2, 3232.	5.8	28
281	Fe–salphen complexes from intracellular pH-triggered degradation ofÂFe3O4@Salphen-InIII CPPs for selectively killing cancer cells. Biomaterials, 2014, 35, 1676-1685.	11.4	28
282	Selfâ€Assembled Soft Nanomaterials Via Silver(I)â€Coordination: Nanotube, Nanofiber, and Remarkably Enhanced Antibacterial Effect. Advanced Science, 2015, 2, 1500134.	11.2	28
283	Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Research, 2015, 8, 4024-4037.	10.4	28
284	Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy. Nano Research, 2016, 9, 1460-1469.	10.4	28
285	Mitochondria-targeted platinum($\langle scp \rangle ii \langle scp \rangle$) complexes: dual inhibitory activities on tumor cell proliferation and migration/invasion via intracellular trafficking of \hat{l}^2 -catenin. Metallomics, 2017, 9, 726-733.	2.4	28
286	Osteogenesis of human induced pluripotent stem cells derived mesenchymal stem cells on hydroxyapatite contained nanofibers. RSC Advances, 2014, 4, 5734.	3.6	27
287	The bio-corona and its impact on nanomaterial toxicity. European Journal of Nanomedicine, 2015, 7, .	0.6	27
288	Multifunctional Magnetic Gd ³⁺ -Based Coordination Polymer Nanoparticles: Combination of Magnetic Resonance and Multispectral Optoacoustic Detections for Tumor-Targeted Imaging in vivo. Small, 2015, 11, 5675-5686.	10.0	26

#	Article	IF	CITATIONS
289	Airborne Nanoparticle Pollution in a Wire Electrical Discharge Machining Workshop and Potential Health Risks. Aerosol and Air Quality Research, 2015, 15, 284-294.	2.1	26
290	Mussel Inspired Polynorepinephrine Functionalized Electrospun Polycaprolactone Microfibers for Muscle Regeneration. Scientific Reports, 2017, 7, 8197.	3.3	26
291	Influence of gastrointestinal environment on free radical generation of silver nanoparticles and implications for their cytotoxicity. NanoImpact, 2018, 10, 144-152.	4.5	26
292	Molecular mechanism of $Gd@C$ 82 (OH) 22 increasing collagen expression: Implication for encaging tumor. Biomaterials, 2018, 152, 24-36.	11.4	26
293	Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms. Environment International, 2020, 140, 105732.	10.0	26
294	Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of the Total Environment, 2020, 717, 137190.	8.0	26
295	Direct quantitative speciation of selenium in selenium-enriched yeast and yeast-based products by X-ray absorption spectroscopy confirmed by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2010, 25, 426.	3.0	25
296	Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Applied Geochemistry, 2011, 26, 182-187.	3.0	25
297	Oxidative Stress and Acute Changes in Murine Brain Tissues After Nasal Instillation of Copper Particles with Different Sizes. Journal of Nanoscience and Nanotechnology, 2014, 14, 4534-4540.	0.9	25
298	Recent advances in the analysis of nanoparticle-protein coronas. Nanomedicine, 2020, 15, 1037-1061.	3.3	25
299	Nanosafety evaluation through feces: A comparison between selenium nanoparticles and selenite in rats. Nano Today, 2021, 36, 101010.	11.9	25
300	Lab-on-chip device for single cell trapping and analysis. Biomedical Microdevices, 2014, 16, 35-41.	2.8	24
301	Effect of relative humidity on the deposition and coagulation of aerosolized SiO2 nanoparticles. Atmospheric Research, 2017, 194, 100-108.	4.1	24
302	Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCrJ, 2018, 5, 141-149.	2.2	24
303	Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter. Analytical Chemistry, 2020, 92, 975-982.	6.5	24
304	Enzymeâ€Triggered Disassembly of Perylene Monoimideâ€based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angewandte Chemie, 2020, 132, 14118-14122.	2.0	24
305	Serum apolipoprotein A-I depletion is causative to silica nanoparticles–induced cardiovascular damage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
306	Speciation and subcellular location of Se-containing proteins in human liver studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and hydride generation-atomic fluorescence spectrometric detection. Analytical and Bioanalytical Chemistry, 2002, 372, 426-430.	3.7	23

#	Article	IF	CITATIONS
307	Biomedical Activities of Endohedral Metallofullerene Optimized for Nanopharmaceutics. Journal of Nanoscience and Nanotechnology, 2010, 10, 8610-8616.	0.9	23
308	Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes. International Journal of Nanomedicine, 2016, Volume 11, 5221-5236.	6.7	23
309	Light responsive hybrid nanofibres for on-demand therapeutic drug and cell delivery. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2411-2420.	2.7	23
310	Graphdiyne–hemin-mediated catalytic system for wound disinfection and accelerated wound healing. Materials Chemistry Frontiers, 2021, 5, 6041-6051.	5.9	23
311	Uncertainties in the antibacterial mechanisms of graphene family materials. Nano Today, 2022, 43, 101436.	11.9	22
312	A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop. Particle and Fibre Toxicology, 2017, 14, 24.	6.2	21
313	Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Research, 2020, 13, 3198-3205.	10.4	21
314	Overview of the methodology of nuclear analytical techniques for speciation studies of trace elements in the biological and environmental sciences. Analytical and Bioanalytical Chemistry, 2002, 372, 407-411.	3.7	20
315	Mercury in human hair and blood samples from people living in Wanshan mercury mine area, Guizhou, China: An XAS study. Journal of Inorganic Biochemistry, 2008, 102, 500-506.	3.5	20
316	Cobalt Phosphide Nanoparticles Applied as a Theranostic Agent for Multimodal Imaging and Anticancer Photothermal Therapy. Particle and Particle Systems Characterization, 2018, 35, 1800127.	2.3	20
317	PEGylated gold nanorods are not cytotoxic to human endothelial cells but affect kruppel-like factor signaling pathway. Toxicology and Applied Pharmacology, 2019, 382, 114758.	2.8	20
318	Fluorometric sensing of pH values using green-emitting black phosphorus quantum dots. Mikrochimica Acta, 2019, 186, 640.	5.0	20
319	Trophic transfer and biomagnification of fullerenol nanoparticles in an aquatic food chain. Environmental Science: Nano, 2020, 7, 1240-1251.	4.3	20
320	3D Imaging and Quantification of the Integrin at a Single-Cell Base on a Multisignal Nanoprobe and Synchrotron Radiation Soft X-ray Tomography Microscopy. Analytical Chemistry, 2021, 93, 1237-1241.	6.5	20
321	<i>In vivo</i> percutaneous permeation of gold nanomaterials in consumer cosmetics: implication in dermal safety assessment of consumer nanoproducts. Nanotoxicology, 2021, 15, 131-144.	3.0	20
322	Carbon Nanotubes Promote the Development of Intestinal Organoids through Regulating Extracellular Matrix Viscoelasticity and Intracellular Energy Metabolism. ACS Nano, 2021, 15, 15858-15873.	14.6	20
323	Synthesis of carbon quantum dots for application of alleviating amyloid- \hat{l}^2 mediated neurotoxicity. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112373.	5.0	20
324	Evaluation of Nanoparticles Emitted from Printers in a lean Chamber, a Copy Center and Office Rooms: ealth Risks of Indoor Air Quality. Journal of Nanoscience and Nanotechnology, 2015, 15, 9554-9564.	0.9	19

#	Article	IF	CITATIONS
325	Engineering Nano–Bio Interfaces from Nanomaterials to Nanomedicines. Accounts of Materials Research, 2022, 3, 812-829.	11.7	19
326	In situ observation of C60(C(COOH)2)2 interacting with living cells using fluorescence microscopy. Science Bulletin, 2006, 51, 1060-1064.	1.7	18
327	Size-dependent impact of CNTs on dynamic properties of calmodulin. Nanoscale, 2014, 6, 12828-12837.	5.6	18
328	Protein corona in vivo: dynamic complement proteins-mediated opsonization and immune modulation. Science Bulletin, 2017, 62, 976-977.	9.0	18
329	Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection. International Journal of Nanomedicine, 2017, Volume 12, 979-987.	6.7	18
330	Platinum, palladium, rhodium, molybdenum and strontium in blood of urban women in nine countries. International Journal of Hygiene and Environmental Health, 2018, 221, 223-230.	4.3	18
331	Poly(lactic-co-glycolic acid)/Polycaprolactone Nanofibrous Membranes for High-Efficient Capture of Nano- and Microsized Particulate Matter. Journal of Biomedical Nanotechnology, 2018, 14, 179-189.	1.1	18
332	Mesoporous silica-coated bismuth nanohybrids as a new platform for photoacoustic/computed tomography imaging and synergistic chemophotothermal therapy. Nanomedicine, 2018, 13, 2283-2300.	3.3	18
333	Gd-metallofullerenol drug delivery system mediated macrophage polarization enhances the efficiency of chemotherapy. Journal of Controlled Release, 2020, 320, 293-303.	9.9	18
334	Nanomaterials as novel agents for amelioration of Parkinson's disease. Nano Today, 2021, 41, 101328.	11.9	18
335	Selenium Speciation in Biological Samples Using a Hyphenated Technique of High-performance Liquid Chromatography and Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2006, 34, 749-753.	1.7	17
336	"Smart―nanomaterials for cancer therapy. Science China Chemistry, 2010, 53, 2241-2249.	8.2	17
337	Cellular Uptake, Intracellular Trafficking and Biological Responses of Gold Nanoparticles. Journal of the Chinese Chemical Society, 2011, 58, 273-281.	1.4	17
338	Biocompatible PEGylated Gold nanorods function As cytokinesis inhibitors to suppress angiogenesis. Biomaterials, 2018, 178, 23-35.	11.4	17
339	Complex to simple: InÂvitro exposure of particulate matter simulated at the air-liquid interface discloses the health impacts of major air pollutants. Chemosphere, 2019, 223, 263-274.	8.2	17
340	Proteomic profiling of RAW264.7 macrophage cells exposed to graphene oxide: insights into acute cellular responses. Nanotoxicology, 2019, 13, 35-49.	3.0	17
341	Metal ions modulation of the self-assembly of short peptide conjugated nonsteroidal anti-inflammatory drugs (NSAIDs). Nanoscale, 2020, 12, 7960-7968.	5. 6	17
342	Initiation of protective autophagy in hepatocytes by gold nanorod core/silver shell nanostructures. Nanoscale, 2020, 12, 6429-6437.	5.6	17

#	Article	IF	Citations
343	Time-course effect of ultrasmall superparamagnetic iron oxide nanoparticles on intracellular iron metabolism and ferroptosis activation. Nanotoxicology, 2021, 15, 366-379.	3.0	17
344	Fullerenol inhibits the cross-talk between bone marrow-derived mesenchymal stem cells and tumor cells by regulating MAPK signaling. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1879-1890.	3.3	16
345	Postchronic Single-Walled Carbon Nanotube Exposure Causes Irreversible Malignant Transformation of Human Bronchial Epithelial Cells through DNA Methylation Changes. ACS Nano, 2021, 15, 7094-7104.	14.6	16
346	Combinational application of metal–organic frameworksâ€based nanozyme and nucleic acid delivery in cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1773.	6.1	16
347	Brain Accumulation and Toxicity Profiles of Silica Nanoparticles: The Influence of Size and Exposure Route. Environmental Science & Environmental Scie	10.0	16
348	Full quantification of selenium species by RP and AF-ICP-qMS with on-line isotope dilution in serum samples from mercury-exposed people supplemented with selenium-enriched yeast. Journal of Analytical Atomic Spectrometry, 2011 , 26 , 224 - 229 .	3.0	15
349	Ginsenosides Extracted from Nanoscale Chinese White Ginseng Enhances Anticancer Effect. Journal of Nanoscience and Nanotechnology, 2012, 12, 6163-6167.	0.9	15
350	High-Content Screening for Assessing Nanomaterial Toxicity. Journal of Nanoscience and Nanotechnology, 2015, 15, 1143-1149.	0.9	15
351	Resonance light scattering aptasensor for urinary 8-hydroxy-2′-deoxyguanosine based on magnetic nanoparticles: a preliminary study of oxidative stress association with air pollution. Mikrochimica Acta, 2018, 185, 419.	5.0	15
352	The adjuvant effect of C60(OH)22 nanoparticles promoting both humoral and cellular immune responses to HCV recombinant proteins. Materials Science and Engineering C, 2019, 97, 753-759.	7.3	15
353	Applications of Nanomaterials in Biology and Medicine. Journal of Nanotechnology, 2012, 2012, 1-2.	3.4	14
354	Pathophysiologic mechanisms of biomedical nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 30-40.	2.8	14
355	Immunological effects of graphene family nanomaterials. NanoImpact, 2017, 5, 109-118.	4.5	14
356	Rethinking Nanosafety: Harnessing Progress and Driving Innovation. Small, 2020, 16, e2002503.	10.0	14
357	Microcalorimetric study of the toxic effect of selenium on the mitochondrial metabolism of cyprinus carpio liver. Biological Trace Element Research, 1997, 60, 115-122.	3.5	13
358	Study on chemical species of iodine in human liver. Biological Trace Element Research, 1999, 69, 69-76.	3.5	13
359	Modulation of Oxidative Stress by Functionalized Fullerene Materials in the Lung Tissues of Female C57/BL Mice with a Metastatic Lewis Lung Carcinoma. Journal of Nanoscience and Nanotechnology, 2010, 10, 8632-8637.	0.9	13
360	Analysis of Small Molecular Selenium Species in Serum Samples from Mercury-Exposed People Supplemented With Selenium-Enriched Yeast by Anion Exchange-Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2011, 39, 466-470.	1.7	13

#	Article	IF	CITATIONS
361	Au nanostructures: an emerging prospect in cancer theranostics. Science China Life Sciences, 2012, 55, 872-883.	4.9	13
362	Death Pathways of Cancer Cells Modulated by Surface Molecule Density on Gold Nanorods. Advanced Science, 2021, 8, e2102666.	11.2	13
363	Detection of Mercury-, Arsenic-, and Selenium-Containing Proteins in Fish Liver from A Mercury Polluted Area of Guizhou Province, China. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1266-1269.	2.3	12
364	Internalization, Translocation and Biotransformation of Silica-Coated Titanium Dioxide Nanoparticles in Neural Stem Cells. Journal of Nanoscience and Nanotechnology, 2010, 10, 7121-7125.	0.9	12
365	C ₆₀ (OH) ₂₂ : a potential histone deacetylase inhibitor with anti-angiogenic activity. Nanoscale, 2016, 8, 16332-16339.	5.6	12
366	A Tiered Experimental Approach for Characterization and Silver Release of Silver-Containing Wound Dressings. Journal of Biomedical Nanotechnology, 2018, 14, 564-574.	1.1	12
367	Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. Journal of Materials Chemistry B, 2018, 6, 5802-5811.	5.8	12
368	New Insights from Chemical Biology: Molecular Basis of Transmission, Diagnosis, and Therapy of SARS-CoV-2. CCS Chemistry, 2021, 3, 1501-1528.	7.8	12
369	Biodegradation of graphdiyne oxide in classically activated (M1) macrophages modulates cytokine production. Nanoscale, 2021, 13, 13072-13084.	5.6	12
370	Engineering carbon nanotubes for sensitive viral detection. TrAC - Trends in Analytical Chemistry, 2022, 153, 116659.	11.4	12
371	Molecular activation analysis for chemical species studies. Fresenius' Journal of Analytical Chemistry, 1999, 363, 477-480.	1.5	11
372	Subcellular Distribution of Polyhydroxylated Metallofullerene Gd@C ₈₂ (OH) ₂₂ in Different Tissues of Tumor-Bearing Mice. Journal of Nanoscience and Nanotechnology, 2010, 10, 8597-8602.	0.9	11
373	Filtration of fine particles in atmospheric aerosol with electrospinning nanofibers and its size distribution. Science China Technological Sciences, 2014, 57, 239-243.	4.0	11
374	Transferrin Adsorbed on PEGylated Gold Nanoparticles and Its Relevance to Targeting Specificity. Journal of Nanoscience and Nanotechnology, 2018, 18, 5306-5313.	0.9	11
375	Inherited and acquired corona of coronavirus in the host: Inspiration from the biomolecular corona of nanoparticles. Nano Today, 2021, 39, 101161.	11.9	11
376	Nano-bio interactions: A major principle in the dynamic biological processes of nano-assemblies. Advanced Drug Delivery Reviews, 2022, 186, 114318.	13.7	11
377	Investigation of selenium distribution in subcellular fractions of human liver by neutron activation analysis. Biological Trace Element Research, 1999, 71-72, 131-138.	3.5	10
378	Preliminary study of selenium and mercury distribution in some porcine tissues and their subcellular fractions by NAA and HG-AFS. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259, 459-463.	1.5	10

#	Article	IF	CITATIONS
379	BIOLOGICAL EFFECT OF INTRANASALLY INSTILLED TITANIUM DIOXIDE NANOPARTICLES ON FEMALE MICE. Nano, 2008, 03, 279-285.	1.0	10
380	Hepatic distribution of iron, copper, zinc and cadmium-containing proteins in normal and iron overload mice. BioMetals, 2009, 22, 251-259.	4.1	10
381	A Panel Study for Cardiopulmonary Effects Produced by Occupational Exposure to Inhalable Titanium Dioxide. Journal of Occupational and Environmental Medicine, 2012, 54, 1389-1394.	1.7	10
382	Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles. Applied Surface Science, 2018, 433, 188-196.	6.1	10
383	Nanoelemental selenium alleviated the mercury load and promoted the formation of high-molecular-weight mercury- and selenium-containing proteins in serum samples from methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 169, 128-133.	6.0	10
384	Proteasome activity regulated by charged gold nanoclusters: Implications for neurodegenerative diseases. Nano Today, 2020, 35, 100933.	11.9	10
385	Graphdiyne: from Preparation to Biomedical Applications. Chemical Research in Chinese Universities, 2021, 37, 1-19.	2.6	10
386	Tailoring bismuth-based nanoparticles for enhanced radiosensitivity in cancer therapy. Nanoscale, 2022, 14, 8245-8254.	5.6	10
387	Graphdiyne oxide nanosheets reprogram immunosuppressive macrophage for cancer immunotherapy. Nano Today, 2022, 45, 101543.	11.9	10
388	Construction of amphiphilic copolymer nanoparticles based on hyperbranched Poly (Amine-Ester) and 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphoethanolamine as drug carriers for cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 945-954.	3.3	9
389	Multiwalled Carbon Nanotubes Inhibit Steroidogenesis by Disrupting Steroidogenic Acute Regulatory Protein Expression and Redox Status. Journal of Nanoscience and Nanotechnology, 2017, 17, 914-925.	0.9	9
390	Experimental and Modeling Studies on the Filtration of SiO ₂ Nanoparticles Aerosolized from Different Solvents. Environmental Science & Environmental	10.0	9
391	Cellular Responses to Exposure to Outdoor Air from the Chinese Spring Festival at the Air–Liquid Interface. Environmental Science & Environmental S	10.0	9
392	Stable isotope labeling of nanomaterials for biosafety evaluation and drug development. Chinese Chemical Letters, 2022, 33, 3303-3314.	9.0	9
393	Bioavailability of nanomaterials: bridging the gap between nanostructures and their bioactivity. National Science Review, 2022, 9, .	9.5	9
394	Subcellular localization of several heavy metals of Hg, Cd and Pb in human liver. Science Bulletin, 2005, 50, 113-116.	1.7	8
395	A Label-Free Gold Nanocluster Fluorescent Probe for Protease Activity Monitoring. Journal of Nanoscience and Nanotechnology, 2014, 14, 4029-4035.	0.9	8
396	Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics, 2021, 13, .	2.4	8

#	Article	IF	CITATIONS
397	Hypoxia and pH co-triggered oxidative stress amplifier for tumor therapy. European Journal of Pharmacology, 2021, 905, 174187.	3.5	8
398	A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascadeâ€Catalytic Tumor Therapy. Angewandte Chemie, 2021, 133, 25532-25542.	2.0	8
399	Quantification of Trace Elements in Protein Bands Using Synchrotron Radiation X-ray Fluorescence after Electrophoretic Separation. Chinese Journal of Analytical Chemistry, 2006, 34, 443-446.	1.7	7
400	Selective enhancement of human stem cell proliferation by mussel inspired surface coating. RSC Advances, 2016, 6, 60206-60214.	3.6	7
401	Graphdiyne:Structure of Fluorescent Quantum Dots. Angewandte Chemie, 2020, 132, 16855.	2.0	7
402	Rearrangement of protein structures on a gold nanoparticle surface is regulated by ligand adsorption modes. Nanoscale, 2021, 13, 20425-20436.	5.6	7
403	Reverse anti-breast cancer drug resistance effects by a novel two-step assembled nano-celastrol medicine. Nanoscale, 2022, 14, 7856-7863.	5.6	7
404	Study on the isolation, purification and physicochemical properties of polysaccharides fromindocalamus tesselatus. Biomedical Chromatography, 1999, 13, 11-14.	1.7	6
405	Element content and element correlations in Chinese human liver. Analytical and Bioanalytical Chemistry, 2004, 380, 773-781.	3.7	6
406	Genotoxicity and Cancer., 2012,, 243-261.		6
407	Physiological behavior of quantum dots. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 620-637.	6.1	6
408	Clathrin meets caveolae: fuse or not?. Science Bulletin, 2015, 60, 1787-1788.	9.0	6
409	Genotoxicity and Cancer. , 2017, , 423-445.		6
410	C60(OH)n-loaded nanofibrous membranes protect HaCaT cells from ROS-associated damage. Chinese Chemical Letters, 2017, 28, 1889-1892.	9.0	6
411	Phage capsid nanoparticles as multivalent inhibitors of viral infections. Science Bulletin, 2020, 65, 2050-2052.	9.0	6
412	The new face of iron oxide nanoparticles: the bullets targeting tumor microenvironment for cancer therapy. Science Bulletin, 2016, 61, 1788-1790.	9.0	5
413	A One-pot-synthesized Double-layered Anticoagulant Hydrogel Tube. Chemical Research in Chinese Universities, 2021, 37, 1-7.	2.6	5
414	Cellular Uptake, Stability, and Safety of Hollow Carbon Sphere-Protected Fe ₃ O ₄ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2020, 20, 2584-2591.	0.9	5

#	Article	IF	Citations
415	å½±å"纳米ææ−™æ⁻'性的å³é"®å›ç´. Chinese Science Bulletin, 2013, 58, 2466-2478.	0.7	5
416	Title is missing!. Chinese Optics Letters, 2019, 17, 062401.	2.9	5
417	Effects of an Interdisciplinary Care Team on the Management of Alzheimer's Disease in China. Journal of Gerontological Nursing, 2019, 45, 39-45.	0.6	5
418	In situ analysis of trace elements in metalloproteins of human liver by synchrotron radiation X-ray fluorescence. Science in China Series A: Mathematics, 2000, 43, 88-92.	0.5	4
419	Accumulation and transformation of nanomaterials in ecological model organisms investigated by using synchrotron radiation techniques. Journal of Analytical Atomic Spectrometry, 2015, 30, 2038-2047.	3.0	4
420	Safety considerations for nanoparticles in tumor treatment. Nanomedicine, 2018, 13, 2373-2376.	3.3	4
421	Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics. Advances in Experimental Medicine and Biology, 2018, 1055, 213-243.	1.6	4
422	Rethinking Nanosafety Part II: Leveraging Progress to Pioneer New Approaches and Solutions. Small, 2020, 16, e2004934.	10.0	4
423	Frontispiece: A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascadeâ€Catalytic Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, .	13.8	4
424	Nanomaterialsâ€Mediated Structural and Physiological Modulation of Blood Brain Barrier for Therapeutic Purposes. Advanced Materials Interfaces, 2022, 9, .	3.7	4
425	Retrospective Comparison of Fludarabine in Combination With Intermediate-Dose Cytarabine Versus High-Dose Cytarabine As Consolidation Therapies for Acute Myeloid Leukemia. Medicine (United States), 2014, 93, e134.	1.0	3
426	Near-Infrared Light-Mediated Gold Nanoplatforms for Cancer Theranostics. Springer Series in Biomaterials Science and Engineering, 2016, , 3-52.	1.0	3
427	Environment, Health and Safety Issues in Nanotechnology. Springer Handbooks, 2017, , 1559-1586.	0.6	3
428	In situ Analysis of the Fate and Behavior of Inorganic Nanomaterials in Biological Systems by Synchrotron Radiation X-ray Probe Techniques. Current Analytical Chemistry, 2022, 18, 723-738.	1.2	3
429	Nuclear-based Metallomics in Metallic Nanomaterials: Nanometallomics. , 2010, , 342-384.		3
430	The development of hybrid electric vehicle control strategy based on GT-SUITE and Simulink. , 0, , .		3
431	Nanotoxicity. , 2012, , 599-620.		3
432	A solid ultrasonic coupling membrane for superficial vascular ultrasonography. Nanoscale, 2022, 14, 3545-3553.	5.6	3

#	Article	IF	CITATIONS
433	Isotopic Tracer Studies on the Metabolism and Functional Roles of Mineral Elements in Institute of High Energy Physics, China. Journal of Nuclear Science and Technology, 2006, 43, 450-454.	1.3	2
434	Preliminary study of oxidative stress in human hepatocellular carcinoma and adjacent normal liver tissues. Chinese Journal of Clinical Oncology, 2006, 3, 11-14.	0.0	2
435	Metallofullerenols: Polyhydroxylated Metallofullerenols Stimulate IL-1β Secretion of Macrophage through TLRs/MyD88/NF-γB Pathway and NLRP3Inflammasome Activation (Small 12/2014). Small, 2014, 10, 2310-2310.	10.0	2
436	Nanotechnology for cancer drug design, delivery, and theranostics applications., 2021, , 1-26.		2
437	Structure of polymer-capped gold nanorods binding to model phospholipid monolayers. JPhys Materials, 2021, 4, 034004.	4.2	2
438	Toxicology of nanomaterials: From toxicokinetics to toxicity mechanisms. , 2023, , 718-732.		2
439	Web Data Mining System Based on Web Services. , 2009, , .		1
440	Chapter 6. X-ray Absorption Spectroscopy., 2010,, 163-211.		1
441	Recent advances on nanomaterials as vaccine carriers and adjuvants for major diseases. Chinese Science Bulletin, 2012, 57, 2341-2353.	0.7	1
442	Light-activated mesoporous nanocarriers to overcome drug resistance of cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 519.	3.3	1
443	Thermal Unfolding Process of Lysozyme on PEGylated Gold Nanoparticles Reveals Length-Dependent Effects of PEG Layer. Journal of Nanoscience and Nanotechnology, 2018, 18, 5542-5550.	0.9	1
444	Letter on a Prospective Study of the Efficacy of Cell-Assisted Lipotransfer with Stromal Vascular Fraction to Correct Contour Deformities of the Autologous Reconstructed Breast. Aesthetic Plastic Surgery, 2021, 45, 1359-1359.	0.9	1
445	Synchrotron-Based Techniques for the Quantification, Imaging, Speciation, and Structure Characterization of Metals in Environmental and Biological Samples. , 2020, , 57-71.		1
446	é‡åç,¹ç»å—…觉通é"è¿›å…¥ä¸æž¢ç¥žç»ç³»ç»Ÿçš"å•视化过ç~. Chinese Science Bulletin, 2010, 55, 547-55	2.0.7	1
447	On Ai Siqi's Popular Philosophy. , 2017, , .		1
448	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
449	Understanding Nanomaterial–Liver Interactions to Facilitate the Development of Safer Nanoapplications (Adv. Mater. 11/2022). Advanced Materials, 2022, 34, .	21.0	1
450	Secondary doping phenomena of conductive polyaniline composite. Science Bulletin, 1997, 42, 744-748.	1.7	0

#	Article	IF	CITATIONS
451	XAFS study on interactions of metallothionein, mercuric chloride and/or sodium selenite. Diqiu Huaxue, 2006, 25, 124-124.	0.5	0
452	Effect of initial chirp on picosecond pulse breakup in the optical fiber in the presence of noise. Proceedings of SPIE, 2007, , .	0.8	0
453	Editorial: [Hot Topic: Pharmaceutical Kinetics and Toxicological Effects of Nanosystems and Nanomaterials for Biomedical Applications]. Current Drug Metabolism, 2012, 13, 1033-1034.	1.2	0
454	Cancer Treatment: Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy (Adv. Funct. Mater. 44/2014). Advanced Functional Materials, 2014, 24, 7064-7064.	14.9	0
455	Uptake and Transformation of Nanomaterials in Biological Systems Studied by Synchrotron Radiation X-ray Techniques Microscopy and Microanalysis, 2018, 24, 342-345.	0.4	0
456	Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. Microscopy and Microanalysis, 2021, 27, 1566-1569.	0.4	0
457	Exposure and Toxic Effects of Elemental Mercury in Gold Mining Activities. Epidemiology, 2009, 20, S264-S265.	2.7	0
458	Chapter 5. Mössbauer Spectroscopy. , 2010, , 128-162.		0
459	Chapter 10. Application of Integrated Techniques for Micro- and Nano-imaging Towards the Study of Metallomics and Metalloproteomics in Biological Systems. , 2010, , 299-341.		0
460	$Coordination-Responsive\ Drug\ Release\ inside\ Gold\ Nanorod@MOF\ for\ NIR-Induced\ Synergistic\ Chemo-Photothermal\ Therapy.\ SSRN\ Electronic\ Journal,\ O,\ ,\ .$	0.4	0
461	Tentative Analysis of Dong Biwu's Thought on the Rule of Law. , 0, , .		0
462	Frontispiz: A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascadeâ€Catalytic Tumor Therapy. Angewandte Chemie, 2021, 133, .	2.0	0
463	Professor Zhifang Chai: Scientific Contributions and Achievements. Chinese Chemical Letters, 2022, , .	9.0	O