

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5279927/publications.pdf Version: 2024-02-01

DITIE

#	Article	IF	CITATIONS
1	A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects. Acta Metallurgica Sinica (English Letters), 2017, 30, 409-432.	2.9	165
2	Development and evaluation of a magnesium–zinc–strontium alloy for biomedical applications — Alloy processing, microstructure, mechanical properties, and biodegradation. Materials Science and Engineering C, 2013, 33, 3661-3669.	7.3	91
3	An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg–1Sr alloy. Acta Biomaterialia, 2016, 29, 455-467.	8.3	85
4	XPS Studies of Magnesium Surfaces after Exposure to Dulbecco's Modified Eagle Medium, Hank's Buffered Salt Solution, and Simulated Body Fluid. Advanced Engineering Materials, 2010, 12, B699.	3.5	83
5	Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 47-57.	3.1	38
6	In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomaterialia, 2020, 116, 415-425.	8.3	38
7	Effects of alloying elements X (Cr, Mn, Mo, Ni, Si) on the interface stability of TiC (001)/γ-Fe (001) in TiC/316L stainless steel composite formed by selective laser melting: first principles and experiments. Advanced Composites and Hybrid Materials, 2021, 4, 195-204.	21.1	30
8	Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites. Advanced Composites and Hybrid Materials, 2022, 5, 504-512.	21.1	23
9	Regulating discharge performance of Mg anode in primary Mg-air battery by complexing agents. Electrochimica Acta, 2021, 370, 137805.	5.2	18
10	In vivo degradability and biocompatibility of a rheo-formed Mg–Zn–Sr alloy for ureteral implantation. Journal of Magnesium and Alloys, 2022, 10, 1631-1639.	11.9	11
11	The Mechanical Properties and Corrosion Resistance of Magnesium Alloys with Different Alloying Elements for Bone Repair. Crystals, 2018, 8, 271.	2.2	10
12	Rheological Solidification Behavior and Mechanical Properties of AZ91-Sn Alloys. Crystals, 2019, 9, 641.	2.2	10
13	Understanding the precipitation mechanism of copper-bearing phases in Al-Mg-Si system during thermo-mechanical treatment. Journal of Materials Science and Technology, 2022, 96, 226-232.	10.7	10
14	In vivo urinary compatibility of Mg-Sr-Ag alloy in swine model. Bioactive Materials, 2022, 7, 254-262.	15.6	8
15	The Evolution of Microstructure, Mechanical Properties and Fracture Behavior with Increasing Lanthanum Content in AZ91 Alloy. Metals, 2020, 10, 1256.	2.3	7
16	Mechanical and Conductive Performance of Aged 6xxx Aluminum Alloy during Rotary Swaging. Crystals, 2022, 12, 530.	2.2	7
17	Precipitation behavior during re-aging of Al-Mg-Si-Cu alloy. Materials and Design, 2022, 220, 110883.	7.0	7
18	Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 490-498.	2.1	6

DI TIE

#	Article	IF	CITATIONS
19	Microstructure Evolution and Properties Tailoring of Rheo-Extruded Al-Sc-Zr-Fe Conductor via Thermo-Mechanical Treatment. Materials, 2020, 13, 845.	2.9	5
20	Wear resistant aluminum alloy - B4C composites fabricated by rheo-casting and rolling process. Materials Research Express, 2020, 7, 056525.	1.6	3
21	Tailored Mechanical and Conductive Properties of Continuous Rheo-Extruded Al–Sc–Zr Alloy Conductors by Thermomechanical Treatment. Materials Transactions, 2020, 61, 412-415.	1.2	3
22	Dynamic compression behaviour and microstructure of ZK60 alloy under different strain rates. Materials Science and Technology, 2021, 37, 1320-1332.	1.6	2
23	Effect of aging-treatment on dynamic compression behaviour and microstructure of ZK60 alloy. Materials Science and Technology, 2021, 37, 1117-1128.	1.6	1
24	Dissolution behavior of nano-sized precipitates in aged Al-Si-Mg-Cu alloy during cold deformation. Materials Letters, 2022, 320, 132399.	2.6	1
25	Shear Model of Metal Melt Flowing on Vibration Wall and Effect of Shear Stress on Solidification Microstructure. Acta Metallurgica Sinica (English Letters), 2018, 31, 650-658.	2.9	Ο