Mariusz Specht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5279863/publications.pdf

Version: 2024-02-01

		430754	526166
57	894	18	27
papers	citations	h-index	g-index
57	57	57	476
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A low-area design of two-factor authentication using DIES and SBI for IoT security. Journal of Supercomputing, 2022, 78, 4503-4525.	2.4	4
2	Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles. Sensors, 2022, 22, 1844.	2.1	11
3	Study on the Positioning Accuracy of the GNSS/INS System Supported by the RTK Receiver for Railway Measurements. Energies, 2022, 15, 4094.	1.6	2
4	Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle. Measurement: Journal of the International Measurement Confederation, 2021, 175, 109016.	2.5	8
5	Determining the Seasonal Variability of the Territorial Sea Baseline in Poland (2018–2020) Using Integrated USV/GNSS/SBES Measurements. Energies, 2021, 14, 2693.	1.6	4
6	Integration of Multi-Source Geospatial Data from GNSS Receivers, Terrestrial Laser Scanners, and Unmanned Aerial Vehicles. Canadian Journal of Remote Sensing, 2021, 47, 621-634.	1.1	24
7	Consistency analysis of global positioning system position errors with typical statistical distributions. Journal of Navigation, 2021, 74, 1201-1218.	1.0	11
8	Three-Dimensional Thematic Map Imaging of the Yacht Port on the Example of the Polish National Sailing Centre Marina in GdaÅ,,sk. Applied Sciences (Switzerland), 2021, 11, 7016.	1.3	2
9	Concept of an Innovative Autonomous Unmanned System for Bathymetric Monitoring of Shallow Waterbodies (INNOBAT System). Energies, 2021, 14, 5370.	1.6	37
10	Comparative analysis of positioning accuracy of Garmin Forerunner wearable GNSS receivers in dynamic testing. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109846.	2.5	13
11	Impact of Hydrotechnical Structures on Forming the Tombolo Oceanographic Phenomenon in KoÅ, obrzeg and Sopot. TransNav, 2021, 15, 687-694.	0.3	2
12	Consistency of the Empirical Distributions of Navigation Positioning System Errors with Theoretical Distributionsâ€"Comparative Analysis of the DGPS and EGNOS Systems in the Years 2006 and 2014. Sensors, 2021, 21, 31.	2.1	12
13	Determination of Navigation System Positioning Accuracy Using the Reliability Method Based on Real Measurements. Remote Sensing, 2021, 13, 4424.	1.8	17
14	Study on the Positioning Accuracy of GNSS/INS Systems Supported by DGPS and RTK Receivers for Hydrographic Surveys. Energies, 2021, 14, 7413.	1.6	22
15	Testing of Software for the Planning of a Linear Object GNSS Measurement Campaign under Simulated Conditions. Energies, 2021, 14, 7896.	1.6	3
16	Analysis of GNSS, Hydroacoustic and Optoelectronic Data Integration Methods Used in Hydrography. Sensors, 2021, 21, 7831.	2.1	12
17	Automatic Identification System (AIS) Dynamic Data Integrity Monitoring and Trajectory Tracking Based on the Simultaneous Localization and Mapping (SLAM) Process Model. Sensors, 2021, 21, 8430.	2.1	7
18	Optimisation of the Position of Navigational Aids for the Purposes of SLAM technology for Accuracy of Vessel Positioning. Journal of Navigation, 2020, 73, 282-295.	1.0	11

#	Article	IF	Citations
19	Digital Filtering of Railway Track Coordinates in Mobile Multi–Receiver GNSS Measurements. Sensors, 2020, 20, 5018.	2.1	13
20	Study on the Coastline Evolution in Sopot (2008–2018) Based on Landsat Satellite Imagery. Journal of Marine Science and Engineering, 2020, 8, 464.	1.2	23
21	Testing the Accuracy of the Modified ICP Algorithm with Multimodal Weighting Factors. Energies, 2020, 13, 5939.	1.6	9
22	Testing the Positioning Accuracy of GNSS Solutions during the Tramway Track Mobile Satellite Measurements in Diverse Urban Signal Reception Conditions. Energies, 2020, 13, 3646.	1.6	12
23	Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors, 2020, 20, 4000.	2.1	30
24	Application of Least Squares with Conditional Equations Method for Railway Track Inventory Using GNSS Observations. Sensors, 2020, 20, 4948.	2.1	7
25	The Use of USV to Develop Navigational and Bathymetric Charts of Yacht Ports on the Example of National Sailing Centre in Gdańsk. Remote Sensing, 2020, 12, 2585.	1.8	21
26	Road Tests of the Positioning Accuracy of INS/GNSS Systems Based on MEMS Technology for Navigating Railway Vehicles. Energies, 2020, 13, 4463.	1.6	21
27	Evaluation of the Possibility of Identifying a Complex Polygonal Tram Track Layout Using Multiple Satellite Measurements. Sensors, 2020, 20, 4408.	2.1	4
28	Statistical Distribution Analysis of Navigation Positioning System Errorsâ€"Issue of the Empirical Sample Size. Sensors, 2020, 20, 7144.	2.1	18
29	Assessment of the Steering Precision of a Hydrographic USV along Sounding Profiles Using a High-Precision GNSS RTK Receiver Supported Autopilot. Energies, 2020, 13, 5637.	1.6	9
30	Verification of GNSS Measurements of the Railway Track Using Standard Techniques for Determining Coordinates. Remote Sensing, 2020, 12, 2874.	1.8	9
31	Seabed Topography Changes in the Sopot Pier Zone in 2010–2018 Influenced by Tombolo Phenomenon. Sensors, 2020, 20, 6061.	2.1	10
32	Methodology for Carrying out Measurements of the Tombolo Geomorphic Landform Using Unmanned Aerial and Surface Vehicles near Sopot Pier, Poland. Journal of Marine Science and Engineering, 2020, 8, 384.	1.2	32
33	Integrated Geodetic and Hydrographic Measurements of the Yacht Port for Nautical Charts and Dynamic Spatial Presentation. Geosciences (Switzerland), 2020, 10, 203.	1.0	10
34	3D modelling of beach topography changes caused by the tombolo phenomenon using terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) photogrammetry on the example of the city of Sopot. Geo-Marine Letters, 2020, 40, 675-685.	0.5	4
35	Geospatial Modeling of the Tombolo Phenomenon in Sopot using Integrated Geodetic and Hydrographic Measurement Methods. Remote Sensing, 2020, 12, 737.	1.8	33
36	Accuracy Analysis of Measuring X-Y-Z Coordinates with Regard to the Investigation of the Tombolo Effect. Sensors, 2020, 20, 1167.	2.1	6

#	Article	IF	CITATIONS
37	Testing GNSS receiver accuracy in Samsung Galaxy series mobile phones at a sports stadium. Measurement Science and Technology, 2020, 31, 064006.	1.4	26
38	The Accuracy of a Marine Satellite Compass under Terrestrial Urban Conditions. Journal of Marine Science and Engineering, 2020, $8,18.$	1.2	13
39	Methodology for Performing Territorial Sea Baseline Measurements in Selected Waterbodies of Poland. Applied Sciences (Switzerland), 2019, 9, 3053.	1.3	21
40	Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-Cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot. Sensors, 2019, 19, 3939.	2.1	45
41	Method of Evaluating the Positioning System Capability for Complying with the Minimum Accuracy Requirements for the International Hydrographic Organization Orders. Sensors, 2019, 19, 3860.	2.1	20
42	Assessment of the Positioning Accuracy of DGPS and EGNOS Systems in the Bay of Gdansk using Maritime Dynamic Measurements. Journal of Navigation, 2019, 72, 575-587.	1.0	44
43	Comparative analysis of positioning accuracy of Samsung Galaxy smartphones in stationary measurements. PLoS ONE, 2019, 14, e0215562.	1.1	49
44	Determining the Variability of the Territorial Sea Baseline on the Example of Waterbody Adjacent to the Municipal Beach in Gdynia. Applied Sciences (Switzerland), 2019, 9, 3867.	1.3	9
45	Polish DGPS System: 1995–2017 – Study of Positioning Accuracy. Polish Maritime Research, 2019, 26, 15-21.	0.6	9
46	Use of a Least Squares with Conditional Equations Method in Positioning a Tramway Track in the Gdansk Agglomeration. TransNav, 2019, 13, 895-900.	0.3	5
47	A New Method for Determining the Territorial Sea Baseline Using an Unmanned, Hydrographic Surface Vessel. Journal of Coastal Research, 2019, 35, 925.	0.1	17
48	Research project BRIK: development of an innovative method for determining the precise trajectory of a railway vehicle. Transportation Overview, 2019, 2019, 32-47.	0.0	3
49	Availability of the GNSS Geodetic Networks Position during the Hydrographic Surveys in the Ports. TransNav, 2018, 12, 657-661.	0.3	8
50	HYDROGRAPHIC SURVEY PLANNING FOR THE DETERMINATION OF TERRITORIAL SEA BASELINE ON THE EXAMPLE OF SELECTED POLISH SEA AREAS. , 2018 , , .		3
51	Application of an Autonomous/Unmanned Survey Vessel (ASV/USV) in Bathymetric Measurements. Polish Maritime Research, 2017, 24, 36-44.	0.6	54
52	Determination of the Territorial Sea Baseline $\hat{a}\in$ Measurement Aspect. IOP Conference Series: Earth and Environmental Science, 2017, 95, 032011.	0.2	14
53	A History of Maritime Radio-Navigation Positioning Systems used in Poland. Journal of Navigation, 2016, 69, 468-480.	1.0	25
54	Determination of the Territorial Sea Baseline – Aspect of Using Unmanned Hydrographic Vessels. TransNav, 2016, 10, 649-654.	0.3	14

#	Article	IF	CITATIONS
55	Mobile satellite measurements on the Pomeranian Metropolitan Railway. Transportation Overview, 2016, 2016, 24-35.	0.0	3
56	The evaluation of the positioning accuracy of the EGNOS and DGPS systems based on the long-term measurements in the years 2006–2014. , 2015, 47, 99-108.	0.2	4
57	Accuracy Of The GPS Positioning System In The Context Of Increasing The Number Of Satellites In The Constellation. Polish Maritime Research, 2015, 22, 9-14.	0.6	35