Ian R Watson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5279386/ian-r-watson-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36	5,747 citations	22	37
papers		h-index	g-index
37 ext. papers	7,017 ext. citations	14.2 avg, IF	4.86 L-index

#	Paper	IF	Citations
36	The clinical significance of adenomatous polyposis coli (APC) and catenin Beta 1 (CTNNB1) genetic aberrations in patients with melanoma <i>BMC Cancer</i> , 2022 , 22, 38	4.8	1
35	Melanomas with concurrent BRAF non-p.V600 and NF1 loss-of-function mutations are targetable by BRAF/MEK inhibitor combination therapy <i>Cell Reports</i> , 2022 , 39, 110634	10.6	3
34	Spatially mapping the immune landscape of melanoma using imaging mass cytometry <i>Science Immunology</i> , 2022 , 7, eabi5072	28	2
33	Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration <i>Nature Cancer</i> , 2021 , 2, 545-562	15.4	13
32	Reprogramming of Nucleotide Metabolism Mediates Synergy between Epigenetic Therapy and MAP Kinase Inhibition. <i>Molecular Cancer Therapeutics</i> , 2021 , 20, 64-75	6.1	3
31	Mutations in the IFNEAK-STAT Pathway Causing Resistance to Immune Checkpoint Inhibitors in Melanoma Increase Sensitivity to Oncolytic Virus Treatment. <i>Clinical Cancer Research</i> , 2021 , 27, 3432-34	14 2 .9	10
30	Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma <i>Nature Cancer</i> , 2020 , 1, 635-652	15.4	13
29	p66ShcA functions as a contextual promoter of breast cancer metastasis. <i>Breast Cancer Research</i> , 2020 , 22, 7	8.3	4
28	C3a elicits unique migratory responses in immature low-density neutrophils. <i>Oncogene</i> , 2020 , 39, 2612-	2 6.2 3	7
27	Dynamic Neutrophil-to-Lymphocyte Ratio: A Novel Prognosis Measure for Triple-Negative Breast Cancer. <i>Annals of Surgical Oncology</i> , 2020 , 27, 4028-4034	3.1	7
26	Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis. <i>Cell Reports</i> , 2019 , 27, 3902-3915.e6	10.6	68
25	Melanomics: Comprehensive Molecular Analysis of Normal and Neoplastic Melanocytes 2019 , 181-224		
24	Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. <i>Nature Metabolism</i> , 2019 , 1, 360-370	14.6	63
23	Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. <i>Oncogene</i> , 2018 , 37, 3183-3199	9.2	164
22	Dual MAPK Inhibition Is an Effective Therapeutic Strategy for a Subset of Class II BRAF Mutant Melanomas. <i>Clinical Cancer Research</i> , 2018 , 24, 6483-6494	12.9	30
21	Melanomics: Comprehensive Molecular Analysis of Normal and Neoplastic Melanocytes 2018 , 1-44		
20	MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB. <i>Clinical Cancer Research</i> , 2016 , 22, 6088-6098	12.9	30

(2006-2016)

19	Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies. <i>British Journal of Cancer</i> , 2016 , 115, 145-55	8.7	43
18	Genomic Classification of Cutaneous Melanoma. <i>Cell</i> , 2015 , 161, 1681-96	56.2	1807
17	Use of clinical next-generation sequencing to identify melanomas harboring SMARCB1 mutations. <i>Journal of Cutaneous Pathology</i> , 2015 , 42, 308-17	1.7	11
16	The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. <i>Cancer Research</i> , 2014 , 74, 4845-4852	10.1	111
15	Why is melanoma so metastatic?. Pigment Cell and Melanoma Research, 2014, 27, 19-36	4.5	69
14	Emerging patterns of somatic mutations in cancer. <i>Nature Reviews Genetics</i> , 2013 , 14, 703-18	30.1	366
13	Eukaryotic translation elongation factor 1-alpha 1 inhibits p53 and p73 dependent apoptosis and chemotherapy sensitivity. <i>PLoS ONE</i> , 2013 , 8, e66436	3.7	45
12	Regulatory feedback loop between TP73 and TRIM32. Cell Death and Disease, 2013, 4, e704	9.8	26
11	The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. <i>Genome Biology</i> , 2013 , 14, R113	18.3	33
10	Melanoma genome sequencing reveals frequent PREX2 mutations. <i>Nature</i> , 2012 , 485, 502-6	50.4	555
9	A landscape of driver mutations in melanoma. <i>Cell</i> , 2012 , 150, 251-63	56.2	1799
8	NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell, 2011, 19, 168-76	24.3	127
7	Chemotherapy induces NEDP1-mediated destabilization of MDM2. Oncogene, 2010, 29, 297-304	9.2	41
6	Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. <i>EMBO Molecular Medicine</i> , 2010 , 2, 275-88	12	19
5	Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. <i>Cancer Research</i> , 2009 , 69, 9056-64	10.1	74
4	Loss of VHL confers hypoxia-inducible factor (HIF)-dependent resistance to vesicular stomatitis virus: role of HIF in antiviral response. <i>Journal of Virology</i> , 2006 , 80, 10712-23	6.6	46
3	Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. <i>Journal of Biological Chemistry</i> , 2006 , 281, 34096-103	5.4	86
2	Ubiquitin and ubiquitin-like modifications of the p53 family. <i>Neoplasia</i> , 2006 , 8, 655-66	6.4	48

Expression of p53 in renal carcinoma cells is independent of pVHL. *Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis*, **2005**, 578, 23-32

3.3 22