Ian R Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5279386/publications.pdf

Version: 2024-02-01

37	7,822	24 h-index	34
papers	citations		g-index
37	37 docs citations	37	14089
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	13.5	2,562
2	A Landscape of Driver Mutations in Melanoma. Cell, 2012, 150, 251-263.	13.5	2,247
3	Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 2012, 485, 502-506.	13.7	671
4	Emerging patterns of somatic mutations in cancer. Nature Reviews Genetics, 2013, 14, 703-718.	7.7	442
5	Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene, 2018, 37, 3183-3199.	2.6	317
6	NEDD8 Pathways in Cancer, Sine Quibus Non. Cancer Cell, 2011, 19, 168-176.	7.7	156
7	The RAC1 P29S Hotspot Mutation in Melanoma Confers Resistance to Pharmacological Inhibition of RAF. Cancer Research, 2014, 74, 4845-4852.	0.4	148
8	Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis. Cell Reports, 2019, 27, 3902-3915.e6.	2.9	144
9	Why is melanoma so metastatic?. Pigment Cell and Melanoma Research, 2014, 27, 19-36.	1.5	113
10	Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nature Metabolism, 2019, 1, 360-370.	5.1	103
11	Mdm2-mediated NEDD8 Modification of TAp73 Regulates Its Transactivation Function*. Journal of Biological Chemistry, 2006, 281, 34096-34103.	1.6	94
12	Suppression of Hypoxia-Inducible Factor 2α Restores p53 Activity via Hdm2 and Reverses Chemoresistance of Renal Carcinoma Cells. Cancer Research, 2009, 69, 9056-9064.	0.4	77
13	Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nature Cancer, 2021, 2, 545-562.	5.7	63
14	Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Science Immunology, 2022, 7, eabi5072.	5.6	60
15	Dual MAPK Inhibition Is an Effective Therapeutic Strategy for a Subset of Class II BRAF Mutant Melanomas. Clinical Cancer Research, 2018, 24, 6483-6494.	3.2	55
16	Ubiquitin and Ubiquitin-Like Modifications of the p53 Family. Neoplasia, 2006, 8, 655-666.	2.3	54
17	Eukaryotic Translation Elongation Factor 1-Alpha 1 Inhibits p53 and p73 Dependent Apoptosis and Chemotherapy Sensitivity. PLoS ONE, 2013, 8, e66436.	1.1	54
18	Loss of VHL Confers Hypoxia-Inducible Factor (HIF)-Dependent Resistance to Vesicular Stomatitis Virus: Role of HIF in Antiviral Response. Journal of Virology, 2006, 80, 10712-10723.	1.5	53

#	Article	IF	CITATIONS
19	Chemotherapy induces NEDP1-mediated destabilization of MDM2. Oncogene, 2010, 29, 297-304.	2.6	51
20	Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies. British Journal of Cancer, 2016, 115, 145-155.	2.9	50
21	MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB. Clinical Cancer Research, 2016, 22, 6088-6098.	3.2	43
22	The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. Genome Biology, 2013, 14, R113.	13.9	40
23	Mutations in the IFNÎ ³ -JAK-STAT Pathway Causing Resistance to Immune Checkpoint Inhibitors in Melanoma Increase Sensitivity to Oncolytic Virus Treatment. Clinical Cancer Research, 2021, 27, 3432-3442.	3.2	40
24	Regulatory feedback loop between TP73 and TRIM32. Cell Death and Disease, 2013, 4, e704-e704.	2.7	32
25	Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma. Nature Cancer, 2020, 1, 635-652.	5.7	26
26	Oncolytic targeting of renal cell carcinoma <i>via</i> encephalomyocarditis virus. EMBO Molecular Medicine, 2010, 2, 275-288.	3.3	23
27	Expression of p53 in renal carcinoma cells is independent of pVHL. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 578, 23-32.	0.4	22
28	Dynamic Neutrophil-to-Lymphocyte Ratio: A Novel Prognosis Measure for Triple-Negative Breast Cancer. Annals of Surgical Oncology, 2020, 27, 4028-4034.	0.7	21
29	C3a elicits unique migratory responses in immature low-density neutrophils. Oncogene, 2020, 39, 2612-2623.	2.6	20
30	Use of clinical nextâ€generation sequencing to identify melanomas harboring <i><scp>SMARCB1</scp></i> mutations. Journal of Cutaneous Pathology, 2015, 42, 308-317.	0.7	11
31	p66ShcA functions as a contextual promoter of breast cancer metastasis. Breast Cancer Research, 2020, 22, 7.	2.2	10
32	Melanomas with concurrent BRAF non-p.V600 and NF1 loss-of-function mutations are targetable by BRAF/MEK inhibitor combination therapy. Cell Reports, 2022, 39, 110634.	2.9	10
33	Reprogramming of Nucleotide Metabolism Mediates Synergy between Epigenetic Therapy and MAP Kinase Inhibition. Molecular Cancer Therapeutics, 2021, 20, 64-75.	1.9	5
34	The clinical significance of adenomatous polyposis coli (APC) and catenin Beta 1 (CTNNB1) genetic aberrations in patients with melanoma. BMC Cancer, 2022, 22, 38.	1,1	4
35	Abstract B056: Non-V600 BRAF mutations in melanoma: actionable targets for rational drug combinations. , 2018, , .		1
36	Melanomics: Comprehensive Molecular Analysis of Normal and Neoplastic Melanocytes. , 2019, , 181-224.		0

3

ARTICLE IF CITATIONS

37 Melanomics: Comprehensive Molecular Analysis of Normal and Neoplastic Melanocytes., 2018,, 1-44. O