Kenneth S Koblan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/527892/publications.pdf

Version: 2024-02-01

90 papers

4,242 citations

35 h-index 63 g-index

90 all docs 90 docs citations

90 times ranked 3301 citing authors

#	Article	IF	CITATIONS
1	Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nature Medicine, 1995, 1, 792-797.	30.7	523
2	A Non–D2-Receptor-Binding Drug for the Treatment of Schizophrenia. New England Journal of Medicine, 2020, 382, 1497-1506.	27.0	192
3	Receptor Activity-modifying Protein 1 Determines the Species Selectivity of Non-peptide CGRP Receptor Antagonists. Journal of Biological Chemistry, 2002, 277, 14294-14298.	3.4	178
4	A Farnesyltransferase Inhibitor Induces Tumor Regression in Transgenic Mice Harboring Multiple Oncogenic Mutations by Mediating Alterations in Both Cell Cycle Control and Apoptosis. Molecular and Cellular Biology, 1998, 18, 85-92.	2.3	164
5	Pharmacological Characterization of MK-0974 [<i>N< i>-[(3<i>R< i ,6<i>S< i>)-6-(2,3-Difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihy a Potent and Orally Active Calcitonin Gene-Related Peptide Receptor Antagonist for the Treatment of Migraine, Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 416-421.</i></i></i>	dro-1 <i>H</i>	إلْكِ-imidazo
6	Potent, Orally Bioavailable Calcitonin Gene-Related Peptide Receptor Antagonists for the Treatment of Migraine:  Discovery of ⟨i⟩N⟨/i⟩-[(3⟨i⟩R⟨/i⟩,6⟨i⟩S⟨/i⟩)-6-(2,3-Difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4- (2-oxo-2,3-dihydro-1⟨i⟩H⟨/i⟩-imidazo[4,5-⟨i⟩b⟨/i⟩]pyridin-) Tj ETQq0 0 0 rgBT	∕64erlock	16 ⁰ Tf 50 53
7	SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D ₂ Receptor Mechanism of Action. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 1-14.	2.5	118
8	Design, Synthesis, and Evaluation of a Novel 4-Aminomethyl-4-fluoropiperidine as a T-Type Ca ²⁺ Channel Antagonist. Journal of Medicinal Chemistry, 2008, 51, 3692-3695.	6.4	117
9	Localization of a Binding Site for Phosphatidylinositol 4,5-Bisphosphate on Human Profilin. Journal of Biological Chemistry, 1995, 270, 21114-21120.	3.4	107
10	In Vitro Characterization of T-Type Calcium Channel Antagonist TTA-A2 and In Vivo Effects on Arousal in Mice. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 409-417.	2.5	97
11	LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17967-17972.	7.1	94
12	Preclinical and clinical pharmacodynamic assessment of L-778,123, a dual inhibitor of farnesyl:protein transferase and geranylgeranyl:protein transferase type-I. Molecular Cancer Therapeutics, 2002, 1, 747-58.	4.1	91
13	3-Aminopyrrolidinone Farnesyltransferase Inhibitors:Â Design of Macrocyclic Compounds with Improved Pharmacokinetics and Excellent Cell Potency. Journal of Medicinal Chemistry, 2002, 45, 2388-2409.	6.4	90
14	Farnesyltransferase inhibitors versus Ras inhibitors. Current Opinion in Chemical Biology, 1997, 1, 197-203.	6.1	89
15	Discovery of 1,4-Substituted Piperidines as Potent and Selective Inhibitors of T-Type Calcium Channels. Journal of Medicinal Chemistry, 2008, 51, 6471-6477.	6.4	86
16	Conformational Restriction of Flexible Ligands Guided by the Transferred NOE Experiment:  Potent Macrocyclic Inhibitors of Farnesyltransferase. Journal of the American Chemical Society, 2001, 123, 2107-2108.	13.7	72
17	Antagonism of T-type calcium channels inhibits high-fat diet–induced weight gain in mice. Journal of Clinical Investigation, 2009, 119, 1659-1667.	8.2	72
18	Imidazole-containing diarylether and diarylsulfone inhibitors of farnesyl-protein transferase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3301-3306.	2.2	69

#	Article	IF	Citations
19	Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure. Neuropharmacology, 2010, 58, 185-194.	4.1	68
20	Proline bis-amides as potent dual orexin receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1425-1430.	2.2	64
21	2-Substituted Piperazines as Constrained Amino Acids. Application to the Synthesis of Potent, Non Carboxylic Acid Inhibitors of Farnesyltransferase. Journal of Medicinal Chemistry, 1996, 39, 1345-1348.	6.4	63
22	NR2B-SelectiveN-Methyl-d-aspartate Antagonists:Â Synthesis and Evaluation of 5-Substituted Benzimidazoles. Journal of Medicinal Chemistry, 2004, 47, 2089-2096.	6.4	57
23	Investigation of the species selectivity of a nonpeptide CGRP receptor antagonist using a novel pharmacodynamic assay. Regulatory Peptides, 2005, 127, 71-77.	1.9	56
24	Orally Efficacious NR2B-Selective NMDA Receptor Antagonists. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 697-700.	2.2	52
25	Positive Allosteric Interaction of Structurally Diverse T-Type Calcium Channel Antagonists. Cell Biochemistry and Biophysics, 2009, 55, 81-93.	1.8	52
26	Selection of Potent Inhibitors of Farnesyl-protein Transferase from a Synthetic Tetrapeptide Combinatorial Library. Journal of Biological Chemistry, 1996, 271, 31306-31311.	3.4	51
27	N-Arylpiperazinone Inhibitors of Farnesyltransferase:Â Discovery and Biological Activity. Journal of Medicinal Chemistry, 1999, 42, 3779-3784.	6.4	48
28	Design and Biological Activity of (S)-4-(5-{[1-(3-Chlorobenzyl)-2-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 392 Td (Farnesyltransferase Inhibitor with Excellent Cell Potency. Journal of Medicinal Chemistry, 2001, 44, 2933-2949.	oxopyrrolic 6.4	din-3-ylamino] 47
29	Dasotraline for the Treatment of Attention-Deficit/Hyperactivity Disorder: A Randomized, Double-Blind, Placebo-Controlled, Proof-of-Concept Trial in Adults. Neuropsychopharmacology, 2015, 40, 2745-2752.	5.4	47
30	Benzodiazepine calcitonin gene-related peptide (CGRP) receptor antagonists: Optimization of the 4-substituted piperidine. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5052-5056.	2.2	46
31	Identification and Characterization of 4-Methylbenzyl 4-[(Pyrimidin-2-ylamino)methyl]piperidine-1-carboxylate, an Orally Bioavailable, Brain Penetrant NR2B SelectiveN-Methyl-d-Aspartate Receptor Antagonist. Journal of Medicinal Chemistry, 2007, 50, 807-819.	6.4	45
32	Farnesyltransferase inhibitors and anti-Ras therapy. Breast Cancer Research and Treatment, 1996, 38, 75-83.	2.5	43
33	Quantitative study of protein association at picomolar concentrations: The λ phage cl repressor. Analytical Biochemistry, 1991, 196, 69-75.	2.4	42
34	Design and in Vivo Analysis of Potent Non-Thiol Inhibitors of Farnesyl Protein Transferase. Journal of Medicinal Chemistry, 1999, 42, 3356-3368.	6.4	41
35	Uncovering the Genetic Landscape for Multiple Sleep-Wake Traits. PLoS ONE, 2009, 4, e5161.	2.5	41
36	Safety and effectiveness of ulotaront (SEP-363856) in schizophrenia: results of a 6-month, open-label extension study. NPJ Schizophrenia, 2021, 7, 63.	3.6	39

#	Article	IF	CITATIONS
37	Caprolactams as potent CGRP receptor antagonists for the treatment of migraine. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4795-4798.	2.2	35
38	Non-thiol 3-aminomethylbenzamide inhibitors of farnesyl-protein transferase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1991-1996.	2.2	34
39	NMR studies of novel inhibitors bound to farnesylâ€protein transferase. Protein Science, 1995, 4, 681-688.	7.6	34
40	Clavaric Acid and Steroidal Analogues as Ras- and FPP-Directed Inhibitors of Human Farnesyl-Protein Transferase. Journal of Medicinal Chemistry, 1998, 41, 4492-4501.	6.4	31
41	High-Performance Liquid Chromatography/Mass Spectrometry Characterization of Ki4B-Ras in PSN-1 Cells Treated with the Prenyltransferase Inhibitor L-778,123. Analytical Biochemistry, 2001, 290, 126-137.	2.4	31
42	Sub-chronic administration of zolpidem affects modifications to rat sleep architecture. Brain Research, 2004, 1010, 45-54.	2.2	31
43	Ulotaront: A TAAR1 Agonist for the Treatment of Schizophrenia. ACS Medicinal Chemistry Letters, 2022, 13, 92-98.	2.8	30
44	N-Arylalkyl Pseudopeptide Inhibitors of Farnesyltransferase. Journal of Medicinal Chemistry, 1998, 41, 2651-2656.	6.4	28
45	Aryloxy substituted N-arylpiperazinones as dual inhibitors of farnesyltransferase and geranylgeranyltransferase-l. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1411-1415.	2.2	28
46	Oxo-piperazine Derivatives of N-Arylpiperazinones as Inhibitors of Farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 537-540.	2.2	27
47	Transformed PANSS Factors Intended to Reduce Pseudospecificity Among Symptom Domains and Enhance Understanding of Symptom Change in Antipsychotic-Treated Patients With Schizophrenia. Schizophrenia Bulletin, 2018, 44, 593-602.	4.3	26
48	C-reactive protein and response to lurasidone in patients with bipolar depression. Brain, Behavior, and Immunity, 2018, 73, 717-724.	4.1	26
49	Effect of TAAR1/5-HT1A agonist SEP-363856 on REM sleep in humans. Translational Psychiatry, 2021, 11, 228.	4.8	26
50	Cyclic benzamidines as orally efficacious NR2B-selective NMDA receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3997-4000.	2.2	25
51	Dasotraline in Children with Attention-Deficit/Hyperactivity Disorder: A Six-Week, Placebo-Controlled, Fixed-Dose Trial. Journal of Child and Adolescent Psychopharmacology, 2019, 29, 80-89.	1.3	25
52	Pharmacokinetics and Exposure-Response Relationships of Dasotraline in the Treatment of Attention-Deficit/Hyperactivity Disorder in Adults. Clinical Drug Investigation, 2016, 36, 137-146.	2.2	24
53	Discovery of 3-Substituted Aminocyclopentanes as Potent and Orally Bioavailable NR2B Subtype-Selective NMDA Antagonists. ACS Chemical Neuroscience, 2011, 2, 352-362.	3.5	23
54	T-type calcium channels regulate cortical plasticity in-vivo NR-D-08-7049. NeuroReport, 2009, 20, 257-262.	1.2	21

#	Article	IF	CITATIONS
55	[19] Analysis of site-specific interaction parameters in protein-DNA complexes. Methods in Enzymology, 1992, 210, 405-425.	1.0	20
56	Refined anatomical isolation of functional sleep circuits exhibits distinctive regional and circadian gene transcriptional profiles. Brain Research, 2009, 1271, 1-17.	2.2	20
57	Effects of Inhibition of α-CGRP Receptors on Cardiac and Peripheral Vascular Dynamics in Conscious Dogs with Chronic Heart Failure. Journal of Cardiovascular Pharmacology, 2003, 42, 656-661.	1.9	19
58	Diaryl ether inhibitors of farnesyl-protein transferase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1257-1260.	2.2	18
59	Population pharmacokinetic analysis of ulotaront in subjects with schizophrenia. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 1245-1254.	2.5	18
60	Depicting Safety Profile of TAAR1 Agonist Ulotaront Relative to Reactions Anticipated for a Dopamine D2-Based Pharmacological Class in FAERS. Clinical Drug Investigation, 2021, 41, 1067-1073.	2.2	18
61	EJ-Ras Inhibits Phospholipase C $\langle \text{sub} \rangle \hat{I}^3 1 \langle \text{sub} \rangle$ but Not Actin Polymerization Induced by Platelet-Derived Growth Factor-BB via Phosphatidylinositol 3-Kinase. Circulation Research, 1996, 78, 312-321.	4.5	17
62	Calcitonin gene-related peptide (CGRP) receptor antagonists: Investigations of a pyridinone template. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 755-758.	2.2	16
63	Assessment of human abuse potential of dasotraline compared to methylphenidate and placebo in recreational stimulant users. Drug and Alcohol Dependence, 2016, 159, 26-34.	3.2	16
64	High-throughput analysis of drug binding interactions for the human cardiac channel, Kv1.5. Biochemical Pharmacology, 2009, 77, 177-185.	4.4	15
65	Efficacy and Safety of Dasotraline in Children With ADHD: A Laboratory Classroom Study. Journal of Attention Disorders, 2020, 24, 192-204.	2.6	15
66	In vitro characterization of novel NR2B selective NMDA receptor antagonists. Neurochemistry International, 2005, 46, 453-464.	3.8	14
67	Discovery of Nonracemic Amisulpride to Maximize Benefit/Risk of 5â€HT7 and D2 Receptor Antagonism for the Treatment of Mood Disorders. Clinical Pharmacology and Therapeutics, 2021, 110, 808-815.	4.7	14
68	Synthesis of Conformationally Constrained 5,6,7,8-Tetrahydroimidazo[1,5-a]pyridine Inhibitors of Farnesyltransferase. Organic Letters, 2000, 2, 3473-3476.	4.6	13
69	DIARYLETHER INHIBITORS OF FARNESYL-PROTEIN TRANSFERASE. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1345-1348.	2.2	12
70	Differences in memory function between 5-HT1A receptor genotypes in patients with major depressive disorder. CNS Spectrums, 2016, 21, 379-384.	1.2	12
71	Kinetic characterization of novel NR2B antagonists using fluorescence detection of calcium flux. Journal of Neuroscience Methods, 2004, 137, 247-255.	2.5	11
72	Catechol-O-methyltransferase genotype as modifier of superior responses to venlafaxine treatment in major depressive disorder. Psychiatry Research, 2013, 208, 285-287.	3.3	11

#	Article	lF	CITATIONS
73	Absorption, distribution, metabolism, and excretion of [¹⁴ C]-dasotraline in humans. Pharmacology Research and Perspectives, 2017, 5, e00281.	2.4	11
74	Protein-Protein Interactions as Therapeutic Targets for Cancer. Current Medicinal Chemistry, 1994, 1, 13-34.	2.4	11
75	Generation and Characterization of a Cell Line with Inducible Expression of Cav3.2 (T-Type) Channels. Assay and Drug Development Technologies, 2003, 1, 637-645.	1.2	10
76	A Randomized, Double-blind, Placebo-controlled Proof-of-Concept Trial to Evaluate the Efficacy and Safety of Non-racemic Amisulpride (SEP-4199) for the Treatment of Bipolar I Depression. Journal of Affective Disorders, 2022, 296, 549-558.	4.1	10
77	Analogs of MK-499 are differentially affected by a mutation in the S6 domain of the hERG K+ channel. Biochemical Pharmacology, 2009, 77, 1602-1611.	4.4	9
78	Ulotaront, a novel TAAR1 agonist with 5-HT1A agonist activity, lacks abuse liability and attenuates cocaine cue-induced relapse in rats. Drug and Alcohol Dependence, 2022, 231, 109261.	3.2	9
79	In Vitro ADME and Preclinical Pharmacokinetics of Ulotaront, a TAAR1/5-HT1A Receptor Agonist for the Treatment of Schizophrenia. Pharmaceutical Research, 2022, 39, 837-850.	3.5	8
80	Evaluation of amino acid-based linkers in potent macrocyclic inhibitors of farnesyl-protein transferase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1817-1821.	2.2	6
81	Assessment of Negative Symptoms in Clinical Trials of Acute Schizophrenia: Test of a Novel Enrichment Strategy. Schizophrenia Bulletin Open, 2022, 3, .	1.7	6
82	113 Dasotraline for the Treatment of Moderate to Severe Binge Eating Disorder in Adults: Results From a Randomized, Double-Blind, Placebo-Controlled Study. CNS Spectrums, 2018, 23, 72-73.	1.2	5
83	A sensitive LC-MS/MS method for simultaneous quantification of ulotaront and its N-desmethyl metabolite in human plasma and application to a clinical study. Journal of Pharmaceutical and Biomedical Analysis, 2022, 207, 114404.	2.8	5
84	Characterization of specific and distinct patient types in clinical trials of acute schizophrenia using an uncorrelated PANSS score matrix transform (UPSM). Psychiatry Research, 2020, 294, 113569.	3.3	4
85	138 Efficacy and Safety of SEP-363856, a Novel Psychotropic Agent with a Non-D2 Mechanism of Action, in the Treatment of Schizophrenia. CNS Spectrums, 2020, 25, 287-288.	1.2	4
86	Dasotraline in adults with attention deficit hyperactivity disorder: a placebo-controlled, fixed-dose trial. International Clinical Psychopharmacology, 2021, 36, 117-125.	1.7	4
87	Automation of <i>In Vitro</i> Dose-Inhibition Assays Utilizing the Tecan Genesis and an Integrated Software Package to Support the Drug Discovery Process. Journal of the Association for Laboratory Automation, 2003, 8, 54-63.	2.8	3
88	Understanding Antipsychotic Drug Treatment Effects: A Novel Method to Reduce Pseudospecificity of the Positive and Negative Syndrome Scale (PANSS) Factors. Innovations in Clinical Neuroscience, 2017, 14, 54-58.	0.1	3
89	180 Efficacy of Dasotraline in Children With Attention Deficit Hyperactivity Disorder in a Laboratory Classroom Setting. CNS Spectrums, 2018, 23, 103-103.	1.2	1
90	The rate of dasotraline brain entry is slow following intravenous administration. Psychopharmacology, 2020, 237, 3435-3446.	3.1	1