Roman Yu Peshkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278848/publications.pdf

Version: 2024-02-01

1684188 1720034 13 51 5 7 citations g-index h-index papers 14 14 14 70 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New class of hantaan virus inhibitors based on conjugation of the isoindole fragment to (+)-camphor or (â^')-fenchone hydrazonesv. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127926.	2.2	7
2	Design, Synthesis, and Biological Evaluation of (+)â€Camphor―and (â^')â€Fenchoneâ€Based Derivatives as Potent Orthopoxvirus Inhibitors. ChemMedChem, 2022, 17, .	3.2	7
3	Synthesis of 2â€Xâ€; 3â€Xâ€4,4′â€Dicyanobiphenyls (X = CH ₃ , OCH ₃ , F) by Crossá the Terephthalonitrile Dianion with Substituted Benzonitriles. European Journal of Organic Chemistry, 2015, 2015, 4524-4531.	sâ€Coupling 2.4	g of 6
4	One-pot synthesis of 4′-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling. Beilstein Journal of Organic Chemistry, 2016, 12, 1577-1584.	2.2	6
5	Synthesis of cyclic D-(+)-camphoric acid imides and study of their antiviral activity. Chemistry of Heterocyclic Compounds, 2020, 56, 763-768.	1.2	6
6	Purposeful regioselectivity control of the Birch reductive alkylation of biphenyl-4-carbonitrile. Tetrahedron, 2018, 74, 842-851.	1.9	5
7	Unexpected Ring Opening During the Imination of Camphorâ€Type Bicyclic Ketones. European Journal of Organic Chemistry, 2021, 2021, 452-463.	2.4	5
8	P ₂ O ₅ -Promoted Cyclization of Di[aryl(hetaryl)methyl] Malonic Acids as a Pathway to Fused Spiro[4.4]nonane-1,6-Diones. Journal of Organic Chemistry, 2022, 87, 2456-2469.	3.2	4
9	Addition of cyanomethyl anion to the cyano group of 2-cyano-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl, a nitronyl nitroxide. Tetrahedron Letters, 2016, 57, 2327-2330.	1.4	2
10	Radical Anions of Aromatic Carbonitriles as Reagents for Arylation of Fluorinated Benzonitriles. Journal of Organic Chemistry, 2019, 84, 963-972.	3.2	2
11	Synthesis of 4-(\tilde{l} %-X-alkyl)benzonitriles (X = 1,3-dioxan-2-yl, CN, CO2Et) by the reaction of terephthalonitrile dianion with \tilde{l} %-X-alkyl bromides in liquid ammonia. Russian Chemical Bulletin, 2016, 65, 2430-2436.	1.5	1
12	Synthesis of 4'-alkyl-[1,1'-biphenyl]-2,3'-dicarbonitriles via dimerisation of phthalonitrile radical anion in liquid ammonia. Arkivoc, 2019, 2018, 349-356.	0.5	0
13	Symmetric Spirenes: Promising Building Blocks for New Generation Opto-Electronic Materials. Physical Chemistry Chemical Physics, 0, , .	2.8	O