Marcos Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring Coastal Subsidence after Recent Earthquakes in Chile Central Using SAR Interferometry and GNSS Data. Remote Sensing, 2022, 14, 1611.	4.0	7
2	Role of Poroelasticity During the Early Postseismic Deformation of the 2010 Maule Megathrust Earthquake. Geophysical Research Letters, 2022, 49, .	4.0	4
3	Interplate Coupling and Seismic Potential in the Atacama Seismic Gap (Chile): Dismissing a Rigid Andean Sliver. Geophysical Research Letters, 2022, 49, .	4.0	9
4	Locking-derived tsunami scenarios for the most recent megathrust earthquakes in Chile: implications for tsunami hazard assessment. Natural Hazards, 2021, 107, 35-52.	3.4	5
5	Transient Deformation and Stress Patterns Induced by the 2010 Maule Earthquake in the Illapel Segment. Frontiers in Earth Science, 2021, 9, .	1.8	4
6	Microseismicity Appears to Outline Highly Coupled Regions on the Central Chile Megathrust. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022252.	3.4	13
7	Automatic Detection of Slow Slip Events Using the PICCA: Application to Chilean GNSS Data. Frontiers in Earth Science, 2021, 9, .	1.8	2
8	Megathrust Locking and Viscous Mantle Flow Induce Continental Shortening in Central Andes. Pure and Applied Geophysics, 2020, 177, 2841-2852.	1.9	6
9	Forming a Mogi Doughnut in the Years Prior to and Immediately Before the 2014 <i>M</i> 8.1 Iquique, Northern Chile, Earthquake. Geophysical Research Letters, 2020, 47, e2020GL088351.	4.0	27
10	Impact of power-law rheology on the viscoelastic relaxation pattern and afterslip distribution following the 2010 Mw 8.8 Maule earthquake. Earth and Planetary Science Letters, 2020, 542, 116292.	4.4	20
11	Dense GNSS Profiles Across the Northwestern Tip of the Indiaâ€Asia Collision Zone: Triggered Slip and Westward Flow of the Peter the First Range, Pamir, Into the Tajik Depression. Tectonics, 2020, 39, e2019TC005797.	2.8	16
12	Months-long thousand-kilometre-scale wobbling before great subduction earthquakes. Nature, 2020, 580, 628-635.	27.8	49
13	Role of Lower Crust in the Postseismic Deformation of the 2010 Maule Earthquake: Insights from a Model with Power-Law Rheology. Pure and Applied Geophysics, 2019, 176, 3913-3928.	1.9	22
14	Earthquake segmentation in northern Chile correlates with curved plate geometry. Scientific Reports, 2019, 9, 4403.	3.3	16
15	Breaking a subduction-termination from top to bottom: The large 2016 KaikÅura Earthquake, New Zealand. Earth and Planetary Science Letters, 2019, 506, 221-230.	4.4	36
16	Characterizing Afterslip and Ground Displacement Rate Increase Following the 2014 Iquiqueâ€Pisagua M _w 8.1 Earthquake, Northern Chile. Journal of Geophysical Research: Solid Earth, 2018, 123, 4171-4192.	3.4	29
17	Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nature Geoscience, 2018, 11, 285-290.	12.9	61
18	The Chilean GNSS Network: Current Status and Progress toward Early Warning Applications. Seismological Research Letters, 2018, 89, 1546-1554.	1.9	40

MARCOS MORENO

#	Article	IF	CITATIONS
19	Back to full interseismic plate locking decades after the giant 1960 Chile earthquake. Nature Communications, 2018, 9, 3527.	12.8	13
20	Spatiotemporal Variation of Mantle Viscosity and the Presence of Cratonic Mantle Inferred From 8ÂYears of Postseismic Deformation Following the 2010 Maule, Chile, Earthquake. Geochemistry, Geophysics, Geosystems, 2018, 19, 3272-3285.	2.5	18
21	Geometrical and Frictional Effects on Incomplete Rupture and Shallow Slip Deficit in Rampâ€Flat Structures. Geophysical Research Letters, 2018, 45, 8949-8957.	4.0	8
22	The superâ€interseismic phase of the megathrust earthquake cycle in Chile. Geophysical Research Letters, 2017, 44, 784-791.	4.0	59
23	Postseismic uplift of the Andes following the 2010 Maule earthquake: Implications for mantle rheology. Geophysical Research Letters, 2017, 44, 1768-1776.	4.0	25
24	Reawakening of large earthquakes in south central Chile: The 2016 <i>M</i> _{<i>w</i>} 7.6 Chiloé event. Geophysical Research Letters, 2017, 44, 6633-6640.	4.0	30
25	The first since 1960: A large event in the Valdivia segment of the Chilean Subduction Zone, the 2016 M7.6 Melinka earthquake. Earth and Planetary Science Letters, 2017, 474, 68-75.	4.4	23
26	The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake?. Geophysical Research Letters, 2016, 43, 574-583.	4.0	120
27	Local tsunami warnings: Perspectives from recent large events. Geophysical Research Letters, 2016, 43, 1109-1117.	4.0	69
28	Coseismic slip and afterslip of the 2015 <i>M_w</i> 8.3 Illapel (Chile) earthquake determined from continuous GPS data. Geophysical Research Letters, 2016, 43, 10,710.	4.0	44
29	Separating rapid relocking, afterslip, and viscoelastic relaxation: An application of the postseismic straightening method to the Maule 2010 cGPS. Journal of Geophysical Research: Solid Earth, 2016, 121, 7618-7638.	3.4	47
30	Aftershock seismicity and tectonic setting of the 2015 September 16 Mw 8.3 Illapel earthquake, Central Chile. Geophysical Journal International, 2016, 206, 1424-1430.	2.4	20
31	Contrasting amount of fluids along the megathrust ruptured by the 2010 Maule earthquake as revealed by a combined analysis of aftershocks and afterslip. Tectonophysics, 2016, 671, 95-109.	2.2	9
32	Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peruâ€North Chile subduction zone. Journal of Geophysical Research: Solid Earth, 2015, 120, 4522-4538.	3.4	87
33	Investigating the final seismic swarm before the Iquiqueâ€Pisagua 2014 <i>M_w</i> 8.1 by comparison of continuous GPS and seismic foreshock data. Geophysical Research Letters, 2015, 42, 3820-3828.	4.0	32
34	Clusters of megaearthquakes on upper plate faults control the Eastern Mediterranean hazard. Geophysical Research Letters, 2015, 42, 10,282.	4.0	29
35	Vertical deformation through a complete seismic cycle at Isla Santa MarÃa, Chile. Nature Geoscience, 2015, 8, 547-551.	12.9	44
36	Near-field co-seismic ionospheric response due to the northern Chile Mw 8.1 Pisagua earthquake on April 1, 2014 from GPS observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134, 1-8.	1.6	9

3

MARCOS MORENO

#	Article	IF	CITATIONS
37	Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone earthquakes: Nias 2005, Maule 2010 and Tohoku 2011. Geophysical Journal International, 2014, 199, 784-799.	2.4	28
38	Splay fault triggering by great subduction earthquakes inferred from finite element models. Geophysical Research Letters, 2014, 41, 385-391.	4.0	28
39	Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 2014, 512, 299-302.	27.8	279
40	Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. Nature Geoscience, 2014, 7, 292-296.	12.9	122
41	A high-resolution, time-variable afterslip model for the 2010 Maule Mw = 8.8, Chile megathrust earthquake. Earth and Planetary Science Letters, 2013, 383, 26-36.	4.4	78
42	Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake: REPLY. Geology, 2013, 41, e310-e310.	4.4	4
43	Estimating coseismic coastal uplift with an intertidal mussel: calibration for the 2010 Maule Chile earthquake (MwÂ=Â8.8). Quaternary Science Reviews, 2012, 42, 29-42.	3.0	49
44	Aftershock seismicity of the 27 February 2010 Mw 8.8 Maule earthquake rupture zone. Earth and Planetary Science Letters, 2012, 317-318, 413-425.	4.4	80
45	Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth and Planetary Science Letters, 2012, 321-322, 152-165.	4.4	198
46	Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake. Geology, 2012, 40, 251-254.	4.4	81
47	Darwin' seismic gap closed by the 2010 Maule earthquake. Andean Geology, 2012, 39, .	0.5	5
48	Heterogeneous plate locking in the South–Central Chile subduction zone: Building up the next great earthquake. Earth and Planetary Science Letters, 2011, 305, 413-424.	4.4	129
49	2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 2010, 467, 198-202.	27.8	383
50	Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 2009, 36, .	4.0	172
51	Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39°S). Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	43