
Daniel Crespy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulating Protein Corona and Materials–Cell Interactions with Temperatureâ€Responsive Materials. Advanced Functional Materials, 2022, 32, .	7.8	18
2	<scp>Stimuliâ€responsive</scp> polymeric additives for anticorrosion. Journal of Applied Polymer Science, 2022, 139, 51730.	1.3	2
3	Polymer-corrosion inhibitor conjugates as additives for anticorrosion application. Progress in Organic Coatings, 2022, 163, 106639.	1.9	17
4	Temperatureâ€Responsive Nanoparticles Enable Specific Binding of Apolipoproteins from Human Plasma. Small, 2022, 18, e2103138.	5.2	8
5	Preparation of nanoparticles of shellac and shellac-oligomer conjugates. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 228-240.	1.2	1
6	Tuning the Hydrolytic Behavior of Hydroxyquinoline Derivatives for Anticorrosion Applications. Chemistry of Materials, 2022, 34, 2842-2852.	3.2	5
7	Morphology and visible photoluminescence modulation in dye-free mesoporous silica nanoparticles using a simple calcination step. Materials Research Bulletin, 2022, 152, 111842.	2.7	13
8	New approach using fluorescent nanosensors for filiform corrosion inhibition. Materials Letters, 2022, 318, 132240.	1.3	2
9	Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. Journal of Colloid and Interface Science, 2022, 622, 75-86.	5.0	6
10	Degradable polyprodrugs: design and therapeutic efficiency. Chemical Society Reviews, 2022, 51, 6652-6703.	18.7	28
11	Nanofibrous Patches for Repairing Cracked Surfaces. Advanced Materials Interfaces, 2021, 8, 2001492.	1.9	1
12	Encapsulation of polyprodrugs enables an efficient and controlled release of dexamethasone. Nanoscale Horizons, 2021, 6, 791-800.	4.1	5
13	Nanocapsules with excellent biocompatibility and stability in protein solutions. Biomaterials Science, 2021, 9, 5781-5784.	2.6	2
14	Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime. Nano Letters, 2021, 21, 1591-1598.	4.5	87
15	Biodegradable Harmonophores for Targeted High-Resolution <i>In Vivo</i> Tumor Imaging. ACS Nano, 2021, 15, 4144-4154.	7.3	11
16	Nanofibrous Patches: Nanofibrous Patches for Repairing Cracked Surfaces (Adv. Mater. Interfaces) Tj ETQq0 0 0	rgBT/Over	rlock 10 Tf 50

17	Polymers with Hemiaminal Ether Linkages for pH-Responsive Antibacterial Materials. ACS Macro Letters, 2021, 10, 365-369.	2.3	18
18	Halochromic Polymer Nanosensors for Simple Visual Detection of Local pH in Coatings. Nano Letters, 2021, 21, 3604-3610.	4.5	19

#	Article	IF	CITATIONS
19	Coatings with green corrosion-responsive conjugates. Journal of Industrial and Engineering Chemistry, 2021, 97, 500-505.	2.9	2
20	Compatibility between Drugs and Polymer in Nanoparticles Produced by the Miniemulsionâ€Solvent Evaporation Technique. Macromolecular Materials and Engineering, 2021, 306, 2100102.	1.7	7
21	Adaptive Coatings with Anticorrosion and Antibiofouling Properties. Advanced Functional Materials, 2021, 31, 2102568.	7.8	48
22	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie - International Edition, 2021, 60, 18094-18102.	7.2	24
23	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie, 2021, 133, 18242-18250.	1.6	0
24	Shining a new light on the structure of polyurea/polyurethane materials. Polymer Chemistry, 2021, 12, 3893-3899.	1.9	9
25	Nanoparticles of aromatic biopolymers catalyze CO ₂ cycloaddition to epoxides under atmospheric conditions. Sustainable Energy and Fuels, 2021, 5, 5431-5444.	2.5	19
26	Design of Nanostructured Protective Coatings with a Sensing Function. ACS Applied Materials & Interfaces, 2021, 13, 53046-53054.	4.0	14
27	Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12, 2626-2637.	2.8	26
28	One-Step Preparation of Fuel-Containing Anisotropic Nanocapsules with Stimuli-Regulated Propulsion. ACS Nano, 2020, 14, 498-508.	7.3	18
29	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2020, 59, 20008-20016.	7.2	48
30	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie, 2020, 132, 20183-20191.	1.6	4
31	Smart Coatings: Nanonetwork Composite Coating for Sensing and Corrosion Inhibition (Adv. Mater.) Tj ETQq1 I	0.78431	4 rgBT /Over
32	Inflammation-responsive nanocapsules for the dual-release of antibacterial drugs. Chemical Communications, 2020, 56, 12725-12728.	2.2	12
33	Nanonetwork Composite Coating for Sensing and Corrosion Inhibition. Advanced Materials Interfaces, 2020, 7, 2001073.	1.9	18
34	Fighting corrosion with stimuli-responsive polymer conjugates. Chemical Communications, 2020, 56, 11931-11940.	2.2	32
35	Responsive Colloidosomes with Triple Function for Anticorrosion. ACS Applied Materials & Interfaces, 2020, 12, 42129-42139.	4.0	27
36	Encapsulation of emulsion droplets and nanoparticles in nanofibers as sustainable approach for their transport and storage. Journal of Colloid and Interface Science, 2020, 577, 199-206.	5.0	7

#	Article	IF	CITATIONS
37	Versatile Preparation of Silica Nanocapsules for Biomedical Applications. Particle and Particle Systems Characterization, 2020, 37, 1900484.	1.2	22
38	From In Silico to Experimental Validation: Tailoring Peptide Substrates for a Serine Protease. Biomacromolecules, 2020, 21, 1636-1643.	2.6	3
39	Acid-cleavable polymers for simultaneous fast and slow release of functional molecules. Polymer Chemistry, 2020, 11, 4723-4728.	1.9	11
40	Controlling release kinetics of pH-responsive polymer nanoparticles. Polymer Chemistry, 2020, 11, 1752-1762.	1.9	25
41	Self-reporting of payload release in polymer coatings based on the inner filter effect. Polymer Chemistry, 2020, 11, 1462-1470.	1.9	11
42	Photocatalytic degradation of pesticides by nanofibrous membranes fabricated by colloid-electrospinning. Nanotechnology, 2020, 31, 215603.	1.3	8
43	Mapping the heterogeneity of protein corona by <i>ex vivo</i> magnetic levitation. Nanoscale, 2020, 12, 2374-2383.	2.8	31
44	Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomaterials Science, 2020, 8, 2756-2770.	2.6	57
45	Tattooing Plastics with Reversible and Irreversible Encryption. Advanced Science, 2020, 7, 1903785.	5.6	11
46	Polymer conjugates for dual functions of reporting and hindering corrosion. Polymer, 2020, 194, 122346.	1.8	20
47	Regulating Payload Release from Hybrid Nanocapsules with Dual Silica/Polycaprolactone Shells. Langmuir, 2019, 35, 11389-11396.	1.6	13
48	PEGylation of shellac-based nanocarriers for enhanced colloidal stability. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110434.	2.5	11
49	Hierarchical "tube-on-fiber―carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors. Nanoscale, 2019, 11, 13996-14009.	2.8	57
50	pH-Responsive Nanofibers for Precise and Sequential Delivery of Multiple Payloads. ACS Applied Bio Materials, 2019, 2, 4283-4290.	2.3	3
51	Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polymer Chemistry, 2019, 10, 3674-3711.	1.9	39
52	Controlling Release Kinetics of Payloads from Polymer Conjugates by Hydrophobicity. Macromolecular Chemistry and Physics, 2019, 220, 1900236.	1.1	4
53	Versatile functionalization of polymer nanoparticles with carbonate groups <i>via</i> hydroxyurethane linkages. Polymer Chemistry, 2019, 10, 3571-3584.	1.9	41
54	Synergy between polymer crystallinity and nanoparticles size for payloads release. Journal of Colloid and Interface Science, 2019, 550, 139-146.	5.0	25

#	Article	IF	CITATIONS
55	Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromolecular Bioscience, 2019, 19, e1900063.	2.1	57
56	Programming pH-responsive release of two payloads from dextran-based nanocapsules. Carbohydrate Polymers, 2019, 217, 217-223.	5.1	18
57	2. Green processes and green fibers. , 2019, , 11-40.		1
58	Polymers Based on Cyclic Carbonates as <i>Trait d'Union</i> Between Polymer Chemistry and Sustainable CO ₂ Utilization. ChemSusChem, 2019, 12, 724-754.	3.6	156
59	Nanosensors for Monitoring Early Stages of Metallic Corrosion. ACS Applied Nano Materials, 2019, 2, 812-818.	2.4	35
60	Encapsulation and Release of Functional Nanodroplets Entrapped in Nanofibers. Small, 2018, 14, e1704527.	5.2	11
61	Visible light active nanofibrous membrane for antibacterial wound dressing. Nanoscale Horizons, 2018, 3, 439-446.	4.1	41
62	Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromolecular Bioscience, 2018, 18, e1700387.	2.1	13
63	Encoding materials for programming a temporal sequence of actions. Journal of Materials Chemistry B, 2018, 6, 1433-1448.	2.9	5
64	Designing Smart Polymer Conjugates for Controlled Release of Payloads. Chemical Reviews, 2018, 118, 3965-4036.	23.0	235
65	Hemiaminal ether linkages provide a selective release of payloads from polymer conjugates. Chemical Communications, 2018, 54, 13730-13733.	2.2	25
66	On the Role of Trigger Signal Spreading Velocity for Efficient Self-Healing Coatings for Corrosion Protection. Journal of the Electrochemical Society, 2018, 165, C1017-C1027.	1.3	11
67	Oligo(thioetherâ€ester)s Blocks in Polyurethanes for Slowly Releasing Active Payloads. Macromolecular Chemistry and Physics, 2018, 219, 1800392.	1.1	15
68	Encapsulation and Release of Essential Oils in Functional Silica Nanocontainers. Langmuir, 2018, 34, 13235-13243.	1.6	42
69	pH-Sensitive Polymer Conjugates for Anticorrosion and Corrosion Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20876-20883.	4.0	56
70	Redoxâ€Responsive Polymer with Selfâ€Immolative Linkers for the Release of Payloads. Macromolecular Rapid Communications, 2018, 39, e1800071.	2.0	25
71	Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. Journal of Controlled Release, 2018, 284, 188-212.	4.8	101
72	Recent advances in polymerizations in dispersed media. Advances in Colloid and Interface Science, 2018, 260, 24-31.	7.0	16

#	Article	IF	CITATIONS
73	Chitosan Nanocapsules for pHâ€Triggered Dual Release Based on Corrosion Inhibitors as Model Study. Particle and Particle Systems Characterization, 2018, 35, 1800086.	1.2	15
74	Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology, 2018, 13, 862-869.	15.6	210
75	Redox-responsive release of active payloads from depolymerized nanoparticles. RSC Advances, 2017, 7, 8272-8279.	1.7	18
76	Crystallinity Tunes Permeability of Polymer Nanocapsules. Macromolecules, 2017, 50, 4725-4732.	2.2	17
77	STED Analysis of Droplet Deformation during Emulsion Electrospinning. Macromolecular Chemistry and Physics, 2017, 218, 1600547.	1.1	11
78	Sequence-Controlled Delivery of Peptides from Hierarchically Structured Nanomaterials. ACS Applied Materials & Interfaces, 2017, 9, 3885-3894.	4.0	19
79	Nanofibrous photocatalysts from electrospun nanocapsules. Nanotechnology, 2017, 28, 405601.	1.3	10
80	The structure of fibers produced by colloid-electrospinning depends on the aggregation state of particles in the electrospinning feed. Polymer, 2017, 127, 101-105.	1.8	17
81	Suppressing non-controlled leakage of hydrophilic payloads from redox-responsive nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 2-7.	2.3	5
82	Functional Colloidal Stabilization. Advanced Materials Interfaces, 2017, 4, 1600443.	1.9	38
83	Stabilization of Inverse Miniemulsions by Silyl-Protected Homopolymers. Polymers, 2016, 8, 303.	2.0	3
84	Self-Healing for Anticorrosion Based on Encapsulated Healing Agents. Advances in Polymer Science, 2016, , 219-245.	0.4	19
85	Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts. Nanoscale, 2016, 8, 12998-13005.	2.8	19
86	The Cushion Method: A New Technique for the Recovery of Hydrophilic Nanocarriers. Langmuir, 2016, 32, 13669-13674.	1.6	2
87	Tailoring nanoarchitectonics to control the release profile of payloads. Nanoscale, 2016, 8, 11511-11517.	2.8	33
88	A triblock terpolymer vs. blends of diblock copolymers for nanocapsules addressed by three independent stimuli. Polymer Chemistry, 2016, 7, 3434-3443.	1.9	39
89	Nanocontainers in and onto Nanofibers. Accounts of Chemical Research, 2016, 49, 816-823.	7.6	50
90	The pro-active payload strategy significantly increases selective release from mesoporous nanocapsules. Journal of Controlled Release, 2016, 242, 119-125.	4.8	29

#	Article	IF	CITATIONS
91	Directed Assembly of Soft Anisotropic Nanoparticles by Colloid Electrospinning. Macromolecular Rapid Communications, 2016, 37, 1598-1602.	2.0	1
92	Qualitative sensing of mechanical damage by a fluorogenic "click―reaction. Chemical Communications, 2016, 52, 11076-11079.	2.2	17
93	Dual-responsive multicompartment nanofibers for controlled release of payloads. RSC Advances, 2016, 6, 43767-43770.	1.7	11
94	Control of the release of functional payloads from redox-responsive nanocapsules. RSC Advances, 2016, 6, 104330-104337.	1.7	8
95	Efficient Nanofibrous Membranes for Antibacterial Wound Dressing and UV Protection. ACS Applied Materials & Interfaces, 2016, 8, 29915-29922.	4.0	75
96	Design and Control of Nanoconfinement to Achieve Magnetic Resonance Contrast Agents with High Relaxivity. Advanced Healthcare Materials, 2016, 5, 567-574.	3.9	20
97	pH-Responsive nanocapsules from silylated copolymers. Polymer Chemistry, 2016, 7, 4330-4333.	1.9	8
98	Multifunctional clickable and protein-repellent magnetic silica nanoparticles. Nanoscale, 2016, 8, 3019-3030.	2.8	13
99	Breaking Nano-Spaghetti: Bending and Fracture Tests of Nanofibers. Langmuir, 2016, 32, 1389-1395.	1.6	8
100	Redefining the functions of nanocapsule materials. Nanoscale Horizons, 2016, 1, 268-271.	4.1	10
101	Double Redox-Responsive Release of Encoded and Encapsulated Molecules from Patchy Nanocapsules. Small, 2015, 11, 2995-2999.	5.2	47
102	Size-Dependent Self-Assembly of Anisotropic Silica-Coated Hybrid Nanoparticles. Macromolecular Chemistry and Physics, 2015, 216, 2070-2079.	1.1	3
103	Regenerative Nanoâ€Hybrid Coating Tailored for Autonomous Corrosion Protection. Advanced Materials, 2015, 27, 3825-3830.	11.1	101
104	Advanced stimuli-responsive polymer nanocapsules with enhanced capabilities for payloads delivery. Polymer Chemistry, 2015, 6, 4197-4205.	1.9	68
105	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5, 50063-50069.	1.7	27
106	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. ACS Macro Letters, 2015, 4, 171-176.	2.3	12
107	Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled Nanoparticles. ACS Nano, 2015, 9, 2720-2728.	7.3	59
108	Nanocarrier for Oral Peptide Delivery Produced by Polyelectrolyte Complexation in Nanoconfinement. Biomacromolecules, 2015, 16, 2282-2287.	2.6	28

#	Article	IF	CITATIONS
109	Amino acid-based poly(ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Advances, 2015, 5, 55006-55014.	1.7	20
110	Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning. Polymer, 2015, 66, 268-276.	1.8	37
111	Controlled surface mineralization of metal oxides on nanofibers. RSC Advances, 2015, 5, 37340-37345.	1.7	13
112	Dual-compartment nanofibres: separation of two highly reactive components in close vicinity. RSC Advances, 2015, 5, 97477-97484.	1.7	15
113	Chemical encoding of amphiphilic copolymers for a dual controlled release from their assemblies. Polymer Chemistry, 2015, 6, 5596-5601.	1.9	26
114	Facile Phaseâ€Separation Approach to Encapsulate Functionalized Polymers in Core–Shell Nanoparticles. Macromolecular Chemistry and Physics, 2014, 215, 198-204.	1.1	14
115	Silica nanocapsules for redox-responsive delivery. Colloid and Polymer Science, 2014, 292, 251-255.	1.0	26
116	Reversible Redox-Responsive Assembly/Disassembly of Nanoparticles Mediated by Metal Complex Formation. Chemistry of Materials, 2014, 26, 1300-1302.	3.2	21
117	From core–shell and Janus structures to tricompartment submicron particles. Polymer, 2014, 55, 715-720.	1.8	5
118	Polymer patchy colloids with sticky patches. Polymer Chemistry, 2014, 5, 365-371.	1.9	21
119	Molecular Exchange Kinetics of Diblock Copolymer Micelles Monitored by Fluorescence Correlation Spectroscopy. ACS Macro Letters, 2014, 3, 428-432.	2.3	23
120	Anisotropic Supports in Metalloceneâ€Catalyzed Polymerizations: Templates to Obtain Polyolefin Fibers. Macromolecular Materials and Engineering, 2014, 299, 1155-1162.	1.7	8
121	Stimuli-Selective Delivery of two Payloads from Dual Responsive Nanocontainers. Chemistry of Materials, 2014, 26, 3351-3353.	3.2	64
122	Combining the Best of Two Worlds: Nanoparticles and Nanofibers. Chemistry - an Asian Journal, 2014, 9, 2030-2035.	1.7	12
123	Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules, 2014, 47, 7194-7199.	2.2	32
124	Hydrophobic Nanocontainers for Stimulus-Selective Release in Aqueous Environments. Macromolecules, 2014, 47, 4876-4883.	2.2	67
125	Protein corona change the drug release profile of nanocarriers: The "overlooked―factor at the nanobio interface. Colloids and Surfaces B: Biointerfaces, 2014, 123, 143-149.	2.5	144
126	Janus nanoparticles with both faces selectively functionalized for click chemistry. Polymer Chemistry, 2014, 5, 4097.	1.9	22

#	Article	IF	CITATIONS
127	Wellâ€Ðefined Nanofibers with Tunable Morphology from Spherical Colloidal Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 10107-10111.	7.2	56
128	Redoxâ€Responsive Selfâ€Healing for Corrosion Protection. Advanced Materials, 2013, 25, 6980-6984.	11.1	190
129	Redox Responsive Release of Hydrophobic Self-Healing Agents from Polyaniline Capsules. Journal of the American Chemical Society, 2013, 135, 14198-14205.	6.6	170
130	Transparent and airtight silica nano- and microchannels with uniform tubular cross-section. Soft Matter, 2013, 9, 9824.	1.2	7
131	Recent Advances in the Emulsion Solvent Evaporation Technique for the Preparation of Nanoparticles and Nanocapsules. Advances in Polymer Science, 2013, , 329-344.	0.4	47
132	Elongated polystyrene spheres as resonant building blocks in anisotropic colloidal crystals. Soft Matter, 2013, 9, 9129.	1.2	21
133	Particle Formation in the Emulsionâ \in Solvent Evaporation Process. Small, 2013, 9, 3514-3522.	5.2	71
134	Copolymers Structures Tailored for the Preparation of Nanocapsules. Macromolecules, 2013, 46, 573-579.	2.2	40
135	All Organic Nanofibers As Ultralight Versatile Support for Triplet–Triplet Annihilation Upconversion. ACS Macro Letters, 2013, 2, 446-450.	2.3	71
136	Temperature responsive copolymers of <i>N</i> â€vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate and their interactions with drugs. Journal of Polymer Science Part A, 2013, 51, 3308-3313.	2.5	12
137	Unconventional Nonâ€Aqueous Emulsions for the Encapsulation of a Phototriggerable NOâ€Donor Complex in Polymer Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 138-142.	1.2	27
138	Surface-Functionalized Particles: From their Design and Synthesis to Materials Science and Bio-Applications. Current Organic Chemistry, 2013, 17, 900-912.	0.9	24
139	Hierarchically Structured Metal Oxide/Silica Nanofibers by Colloid Electrospinning. ACS Applied Materials & Interfaces, 2012, 4, 6338-6345.	4.0	64
140	Colloidâ€Electrospinning: Fabrication of Multicompartment Nanofibers by the Electrospinning of Organic or/and Inorganic Dispersions and Emulsions. Macromolecular Rapid Communications, 2012, 33, 1978-1995.	2.0	116
141	End-of-life indicators based on temperature switchable nanobombs. Journal of Materials Chemistry, 2012, 22, 9909.	6.7	7
142	Fabrication of Polymer Ellipsoids by the Electrospinning of Swollen Nanoparticles. ACS Macro Letters, 2012, 1, 907-909.	2.3	41
143	CO2 responsive reversible aggregation of nanoparticles and formation of nanocapsules with an aqueous core. Soft Matter, 2012, 8, 11687.	1.2	46
144	Design and characterization of functionalized silica nanocontainers for self-healing materials. Journal of Materials Chemistry, 2012, 22, 2286-2291.	6.7	71

#	Article	IF	CITATIONS
145	Fluorescence Correlation Spectroscopy Directly Monitors Coalescence During Nanoparticle Preparation. Nano Letters, 2012, 12, 6012-6017.	4.5	49
146	Efficient Encapsulation of Self-Healing Agents in Polymer Nanocontainers Functionalized by Orthogonal Reactions. Macromolecules, 2012, 45, 6324-6332.	2.2	62
147	Patchy Nanocapsules of Poly(vinylferrocene)-Based Block Copolymers for Redox-Responsive Release. ACS Nano, 2012, 6, 9042-9049.	7.3	183
148	A straightforward synthesis of fluorescent and temperatureâ€responsive nanogels. Journal of Polymer Science Part A, 2012, 50, 1043-1048.	2.5	15
149	Facile and Largeâ€Scale Fabrication of Anisometric Particles from Fibers Synthesized by Colloidâ€Electrospinning. Small, 2012, 8, 144-153.	5.2	46
150	How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 2012, 8, 2222-2230.	5.2	180
151	Encapsulation of Selfâ€Healing Agents in Polymer Nanocapsules. Small, 2012, 8, 2954-2958.	5.2	100
152	Reâ€dispersible Anisotropic and Structured Nanoparticles: Formation and Their Subsequent Shape Change. Macromolecular Chemistry and Physics, 2012, 213, 829-838.	1.1	19
153	Chemical Routes Toward Multicompartment Colloids. Macromolecular Chemistry and Physics, 2012, 213, 1183-1189.	1.1	15
154	Monitoring the hygrothermal response of poly(vinyl methyl ether) submicron films using AFM. European Polymer Journal, 2012, 48, 209-216.	2.6	2
155	New possibilities for materials science with STED microscopy. Micron, 2012, 43, 583-588.	1.1	18
156	Preparation and Characterization of Anisotropic Submicron Particles From Semicrystalline Polymers. Macromolecular Chemistry and Physics, 2012, 213, 351-358.	1.1	25
157	Tin(IV) Oxide Coatings from Hybrid Organotin/Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2011, 3, 4292-4298.	4.0	11
158	Characterization via Two-Color STED Microscopy of Nanostructured Materials Synthesized by Colloid Electrospinning. Langmuir, 2011, 27, 7132-7139.	1.6	61
159	Making dry fertile: a practical tour of non-aqueous emulsions and miniemulsions, their preparation and some applications. Soft Matter, 2011, 7, 11054.	1.2	62
160	Phase behavior of binary mixtures of block copolymers and a non-solvent in miniemulsion droplets as single and double nanoconfinement. Soft Matter, 2011, 7, 10219.	1.2	55
161	Synthesis of hydrophilic polyurethane particles in non-aqueous inverse miniemulsions. Colloid and Polymer Science, 2011, 289, 1111-1117.	1.0	16
162	Preparation of Microporous Melamineâ€based Polymer Networks in an Anhydrous Highâ€Temperature Miniemulsion. Macromolecular Rapid Communications, 2011, 32, 1798-1803.	2.0	60

#	Article	IF	CITATIONS
163	Polyoxomolybdate-based selective membranes for chemical protection. Journal of Membrane Science, 2011, 373, 196-201.	4.1	26
164	A new generation of ultralight thermochromic indicators based on temperature induced gas release. Journal of Materials Chemistry, 2011, 21, 17392.	6.7	8
165	Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein Journal of Organic Chemistry, 2010, 6, 1132-1148.	1.3	161
166	High Breakdown Field Dielectric Elastomer Actuators Using Encapsulated Polyaniline as High Dielectric Constant Filler. Advanced Functional Materials, 2010, 20, 3280-3291.	7.8	256
167	Testing heat and mass transfer through membranes and coatings for textiles. , 2010, , 95-122.		1
168	Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs. Chemical Communications, 2010, 46, 6651.	2.2	149
169	Phthalocyanine and encapsulated polyaniline nanoparticles as fillers for dielectric elastomers. , 2009, , .		3
170	Synthesis of polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. Polymer, 2009, 50, 1616-1620.	1.8	64
171	Synthesis and characterization of temperatureâ€responsive copolymers based on <i>N</i> â€vinylcaprolactam and their grafting on fibres. Polymer International, 2009, 58, 1326-1334.	1.6	24
172	Effects of siloxane plasma coating on the frictional properties of polyester and polyamide fabrics. Surface and Coatings Technology, 2009, 204, 165-171.	2.2	37
173	100â€Years of Bakelite, the Material of a 1000 Uses. Angewandte Chemie - International Edition, 2008, 47, 3322-3328.	7.2	102
174	Polymeric Nanoreactors for Hydrophilic Reagents Synthesized by Interfacial Polycondensation on Miniemulsion Droplets. Macromolecules, 2007, 40, 3122-3135.	2.2	207
175	Etching Masks Based on Miniemulsions: A Novel Route Towards Ordered Arrays of Surface Nanostructures. Advanced Materials, 2007, 19, 1337-1341.	11.1	63
176	Preparation of Nylon 6 Nanoparticles and Nanocapsules by Two Novel Miniemulsion/Solvent Displacement Hybrid Techniques. Macromolecular Chemistry and Physics, 2007, 208, 457-466.	1.1	56
177	Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polymer International, 2007, 56, 1461-1468.	1.6	166
178	Synthesis of polymer particles and nanocapsules stabilized with PEO/PPO containing polymerizable surfactants in miniemulsion. Colloid and Polymer Science, 2006, 284, 780-787.	1.0	53
179	Anionic Polymerization of ε-Caprolactam in Miniemulsion: Synthesis and Characterization of Polyamide-6 Nanoparticles. Macromolecules, 2005, 38, 6882-6887.	2.2	85
180	Dual-Responsive Polymer Conjugates with Enhanced Anticorrosion Performance. ACS Applied Polymer Materials, 0, , .	2.0	7