Daniel Crespy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278627/publications.pdf

Version: 2024-02-01

50276 74163 6,998 180 46 75 citations h-index g-index papers 189 189 189 8467 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High Breakdown Field Dielectric Elastomer Actuators Using Encapsulated Polyaniline as High Dielectric Constant Filler. Advanced Functional Materials, 2010, 20, 3280-3291.	14.9	256
2	Designing Smart Polymer Conjugates for Controlled Release of Payloads. Chemical Reviews, 2018, 118, 3965-4036.	47.7	235
3	Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology, 2018, 13, 862-869.	31.5	210
4	Polymeric Nanoreactors for Hydrophilic Reagents Synthesized by Interfacial Polycondensation on Miniemulsion Droplets. Macromolecules, 2007, 40, 3122-3135.	4.8	207
5	Redoxâ€Responsive Selfâ€Healing for Corrosion Protection. Advanced Materials, 2013, 25, 6980-6984.	21.0	190
6	Patchy Nanocapsules of Poly(vinylferrocene)-Based Block Copolymers for Redox-Responsive Release. ACS Nano, 2012, 6, 9042-9049.	14.6	183
7	How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 2012, 8, 2222-2230.	10.0	180
8	Redox Responsive Release of Hydrophobic Self-Healing Agents from Polyaniline Capsules. Journal of the American Chemical Society, 2013, 135, 14198-14205.	13.7	170
9	Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polymer International, 2007, 56, 1461-1468.	3.1	166
10	Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein Journal of Organic Chemistry, 2010, 6, 1132-1148.	2.2	161
11	Polymers Based on Cyclic Carbonates as <i>Trait d'Union</i> Between Polymer Chemistry and Sustainable CO ₂ Utilization. ChemSusChem, 2019, 12, 724-754.	6.8	156
12	Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs. Chemical Communications, 2010, 46, 6651.	4.1	149
13	Protein corona change the drug release profile of nanocarriers: The "overlooked―factor at the nanobio interface. Colloids and Surfaces B: Biointerfaces, 2014, 123, 143-149.	5.0	144
14	Colloidâ€Electrospinning: Fabrication of Multicompartment Nanofibers by the Electrospinning of Organic or/and Inorganic Dispersions and Emulsions. Macromolecular Rapid Communications, 2012, 33, 1978-1995.	3.9	116
15	100â€Years of Bakelite, the Material of a 1000 Uses. Angewandte Chemie - International Edition, 2008, 47, 3322-3328.	13.8	102
16	Regenerative Nanoâ∈Hybrid Coating Tailored for Autonomous Corrosion Protection. Advanced Materials, 2015, 27, 3825-3830.	21.0	101
17	Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. Journal of Controlled Release, 2018, 284, 188-212.	9.9	101
18	Encapsulation of Selfâ€Healing Agents in Polymer Nanocapsules. Small, 2012, 8, 2954-2958.	10.0	100

#	Article	IF	CITATIONS
19	Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime. Nano Letters, 2021, 21, 1591-1598.	9.1	87
20	Anionic Polymerization of $\hat{l}\mu$ -Caprolactam in Miniemulsion: \hat{A} Synthesis and Characterization of Polyamide-6 Nanoparticles. Macromolecules, 2005, 38, 6882-6887.	4.8	85
21	Efficient Nanofibrous Membranes for Antibacterial Wound Dressing and UV Protection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29915-29922.	8.0	7 5
22	Design and characterization of functionalized silica nanocontainers for self-healing materials. Journal of Materials Chemistry, 2012, 22, 2286-2291.	6.7	71
23	Particle Formation in the Emulsionâ€Solvent Evaporation Process. Small, 2013, 9, 3514-3522.	10.0	71
24	All Organic Nanofibers As Ultralight Versatile Support for Triplet–Triplet Annihilation Upconversion. ACS Macro Letters, 2013, 2, 446-450.	4.8	71
25	Advanced stimuli-responsive polymer nanocapsules with enhanced capabilities for payloads delivery. Polymer Chemistry, 2015, 6, 4197-4205.	3.9	68
26	Hydrophobic Nanocontainers for Stimulus-Selective Release in Aqueous Environments. Macromolecules, 2014, 47, 4876-4883.	4.8	67
27	Synthesis of polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. Polymer, 2009, 50, 1616-1620.	3.8	64
28	Hierarchically Structured Metal Oxide/Silica Nanofibers by Colloid Electrospinning. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6338-6345.	8.0	64
29	Stimuli-Selective Delivery of two Payloads from Dual Responsive Nanocontainers. Chemistry of Materials, 2014, 26, 3351-3353.	6.7	64
30	Etching Masks Based on Miniemulsions: A Novel Route Towards Ordered Arrays of Surface Nanostructures. Advanced Materials, 2007, 19, 1337-1341.	21.0	63
31	Making dry fertile: a practical tour of non-aqueous emulsions and miniemulsions, their preparation and some applications. Soft Matter, 2011, 7, 11054.	2.7	62
32	Efficient Encapsulation of Self-Healing Agents in Polymer Nanocontainers Functionalized by Orthogonal Reactions. Macromolecules, 2012, 45, 6324-6332.	4.8	62
33	Characterization via Two-Color STED Microscopy of Nanostructured Materials Synthesized by Colloid Electrospinning. Langmuir, 2011, 27, 7132-7139.	3.5	61
34	Preparation of Microporous Melamineâ€based Polymer Networks in an Anhydrous Highâ€Temperature Miniemulsion. Macromolecular Rapid Communications, 2011, 32, 1798-1803.	3.9	60
35	Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled Nanoparticles. ACS Nano, 2015, 9, 2720-2728.	14.6	59
36	Hierarchical "tube-on-fiber―carbon/mixed-metal selenide nanostructures for high-performance hybrid supercapacitors. Nanoscale, 2019, 11, 13996-14009.	5.6	57

#	Article	IF	CITATIONS
37	Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromolecular Bioscience, 2019, 19, e1900063.	4.1	57
38	Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomaterials Science, 2020, 8, 2756-2770.	5 . 4	57
39	Preparation of Nylon 6 Nanoparticles and Nanocapsules by Two Novel Miniemulsion/Solvent Displacement Hybrid Techniques. Macromolecular Chemistry and Physics, 2007, 208, 457-466.	2.2	56
40	Wellâ€Defined Nanofibers with Tunable Morphology from Spherical Colloidal Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 10107-10111.	13.8	56
41	pH-Sensitive Polymer Conjugates for Anticorrosion and Corrosion Sensing. ACS Applied Materials & Sensitive Polymer Conjugates for Anticorrosion and Corrosion Sensing. ACS Applied Materials	8.0	56
42	Phase behavior of binary mixtures of block copolymers and a non-solvent in miniemulsion droplets as single and double nanoconfinement. Soft Matter, 2011, 7, 10219.	2.7	55
43	Synthesis of polymer particles and nanocapsules stabilized with PEO/PPO containing polymerizable surfactants in miniemulsion. Colloid and Polymer Science, 2006, 284, 780-787.	2.1	53
44	Nanocontainers in and onto Nanofibers. Accounts of Chemical Research, 2016, 49, 816-823.	15.6	50
45	Fluorescence Correlation Spectroscopy Directly Monitors Coalescence During Nanoparticle Preparation. Nano Letters, 2012, 12, 6012-6017.	9.1	49
46	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2020, 59, 20008-20016.	13.8	48
47	Adaptive Coatings with Anticorrosion and Antibiofouling Properties. Advanced Functional Materials, 2021, 31, 2102568.	14.9	48
48	Recent Advances in the Emulsion Solvent Evaporation Technique for the Preparation of Nanoparticles and Nanocapsules. Advances in Polymer Science, 2013, , 329-344.	0.8	47
49	Double Redox-Responsive Release of Encoded and Encapsulated Molecules from Patchy Nanocapsules. Small, 2015, 11, 2995-2999.	10.0	47
50	CO2 responsive reversible aggregation of nanoparticles and formation of nanocapsules with an aqueous core. Soft Matter, 2012, 8, 11687.	2.7	46
51	Facile and Largeâ€Scale Fabrication of Anisometric Particles from Fibers Synthesized by Colloidâ€Electrospinning. Small, 2012, 8, 144-153.	10.0	46
52	Encapsulation and Release of Essential Oils in Functional Silica Nanocontainers. Langmuir, 2018, 34, 13235-13243.	3. 5	42
53	Fabrication of Polymer Ellipsoids by the Electrospinning of Swollen Nanoparticles. ACS Macro Letters, 2012, 1, 907-909.	4.8	41
54	Visible light active nanofibrous membrane for antibacterial wound dressing. Nanoscale Horizons, 2018, 3, 439-446.	8.0	41

#	Article	IF	CITATIONS
55	Versatile functionalization of polymer nanoparticles with carbonate groups <i>via</i> hydroxyurethane linkages. Polymer Chemistry, 2019, 10, 3571-3584.	3.9	41
56	Copolymers Structures Tailored for the Preparation of Nanocapsules. Macromolecules, 2013, 46, 573-579.	4.8	40
57	A triblock terpolymer vs. blends of diblock copolymers for nanocapsules addressed by three independent stimuli. Polymer Chemistry, 2016, 7, 3434-3443.	3.9	39
58	Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polymer Chemistry, 2019, 10, 3674-3711.	3.9	39
59	Functional Colloidal Stabilization. Advanced Materials Interfaces, 2017, 4, 1600443.	3.7	38
60	Effects of siloxane plasma coating on the frictional properties of polyester and polyamide fabrics. Surface and Coatings Technology, 2009, 204, 165-171.	4.8	37
61	Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning. Polymer, 2015, 66, 268-276.	3.8	37
62	Nanosensors for Monitoring Early Stages of Metallic Corrosion. ACS Applied Nano Materials, 2019, 2, 812-818.	5.0	35
63	Tailoring nanoarchitectonics to control the release profile of payloads. Nanoscale, 2016, 8, 11511-11517.	5.6	33
64	Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules, 2014, 47, 7194-7199.	4.8	32
65	Fighting corrosion with stimuli-responsive polymer conjugates. Chemical Communications, 2020, 56, 11931-11940.	4.1	32
66	Mapping the heterogeneity of protein corona by <i>ex vivo</i> magnetic levitation. Nanoscale, 2020, 12, 2374-2383.	5.6	31
67	The pro-active payload strategy significantly increases selective release from mesoporous nanocapsules. Journal of Controlled Release, 2016, 242, 119-125.	9.9	29
68	Nanocarrier for Oral Peptide Delivery Produced by Polyelectrolyte Complexation in Nanoconfinement. Biomacromolecules, 2015, 16, 2282-2287.	5.4	28
69	Degradable polyprodrugs: design and therapeutic efficiency. Chemical Society Reviews, 2022, 51, 6652-6703.	38.1	28
70	Unconventional Nonâ€Aqueous Emulsions for the Encapsulation of a Phototriggerable NOâ€Donor Complex in Polymer Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 138-142.	2.3	27
71	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5, 50063-50069.	3.6	27
72	Responsive Colloidosomes with Triple Function for Anticorrosion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42129-42139.	8.0	27

#	Article	IF	CITATIONS
73	Polyoxomolybdate-based selective membranes for chemical protection. Journal of Membrane Science, 2011, 373, 196-201.	8.2	26
74	Silica nanocapsules for redox-responsive delivery. Colloid and Polymer Science, 2014, 292, 251-255.	2.1	26
75	Chemical encoding of amphiphilic copolymers for a dual controlled release from their assemblies. Polymer Chemistry, 2015, 6, 5596-5601.	3.9	26
76	Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12, 2626-2637.	5.6	26
77	Preparation and Characterization of Anisotropic Submicron Particles From Semicrystalline Polymers. Macromolecular Chemistry and Physics, 2012, 213, 351-358.	2.2	25
78	Hemiaminal ether linkages provide a selective release of payloads from polymer conjugates. Chemical Communications, 2018, 54, 13730-13733.	4.1	25
79	Redoxâ€Responsive Polymer with Selfâ€Immolative Linkers for the Release of Payloads. Macromolecular Rapid Communications, 2018, 39, e1800071.	3.9	25
80	Synergy between polymer crystallinity and nanoparticles size for payloads release. Journal of Colloid and Interface Science, 2019, 550, 139-146.	9.4	25
81	Controlling release kinetics of pH-responsive polymer nanoparticles. Polymer Chemistry, 2020, 11, 1752-1762.	3.9	25
82	Synthesis and characterization of temperatureâ€responsive copolymers based on <i>N</i> â€vinylcaprolactam and their grafting on fibres. Polymer International, 2009, 58, 1326-1334.	3.1	24
83	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie - International Edition, 2021, 60, 18094-18102.	13.8	24
84	Surface-Functionalized Particles: From their Design and Synthesis to Materials Science and Bio-Applications. Current Organic Chemistry, 2013, 17, 900-912.	1.6	24
85	Molecular Exchange Kinetics of Diblock Copolymer Micelles Monitored by Fluorescence Correlation Spectroscopy. ACS Macro Letters, 2014, 3, 428-432.	4.8	23
86	Janus nanoparticles with both faces selectively functionalized for click chemistry. Polymer Chemistry, 2014, 5, 4097.	3.9	22
87	Versatile Preparation of Silica Nanocapsules for Biomedical Applications. Particle and Particle Systems Characterization, 2020, 37, 1900484.	2.3	22
88	Elongated polystyrene spheres as resonant building blocks in anisotropic colloidal crystals. Soft Matter, 2013, 9, 9129.	2.7	21
89	Reversible Redox-Responsive Assembly/Disassembly of Nanoparticles Mediated by Metal Complex Formation. Chemistry of Materials, 2014, 26, 1300-1302.	6.7	21
90	Polymer patchy colloids with sticky patches. Polymer Chemistry, 2014, 5, 365-371.	3.9	21

#	Article	IF	Citations
91	Amino acid-based poly(ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Advances, 2015, 5, 55006-55014.	3.6	20
92	Design and Control of Nanoconfinement to Achieve Magnetic Resonance Contrast Agents with High Relaxivity. Advanced Healthcare Materials, 2016, 5, 567-574.	7.6	20
93	Polymer conjugates for dual functions of reporting and hindering corrosion. Polymer, 2020, 194, 122346.	3.8	20
94	Reâ€dispersible Anisotropic and Structured Nanoparticles: Formation and Their Subsequent Shape Change. Macromolecular Chemistry and Physics, 2012, 213, 829-838.	2.2	19
95	Self-Healing for Anticorrosion Based on Encapsulated Healing Agents. Advances in Polymer Science, 2016, , 219-245.	0.8	19
96	Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts. Nanoscale, 2016, 8, 12998-13005.	5.6	19
97	Sequence-Controlled Delivery of Peptides from Hierarchically Structured Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3885-3894.	8.0	19
98	Halochromic Polymer Nanosensors for Simple Visual Detection of Local pH in Coatings. Nano Letters, 2021, 21, 3604-3610.	9.1	19
99	Nanoparticles of aromatic biopolymers catalyze CO ₂ cycloaddition to epoxides under atmospheric conditions. Sustainable Energy and Fuels, 2021, 5, 5431-5444.	4.9	19
100	New possibilities for materials science with STED microscopy. Micron, 2012, 43, 583-588.	2.2	18
101	Redox-responsive release of active payloads from depolymerized nanoparticles. RSC Advances, 2017, 7, 8272-8279.	3.6	18
102	Programming pH-responsive release of two payloads from dextran-based nanocapsules. Carbohydrate Polymers, 2019, 217, 217-223.	10.2	18
103	One-Step Preparation of Fuel-Containing Anisotropic Nanocapsules with Stimuli-Regulated Propulsion. ACS Nano, 2020, 14, 498-508.	14.6	18
104	Nanonetwork Composite Coating for Sensing and Corrosion Inhibition. Advanced Materials Interfaces, 2020, 7, 2001073.	3.7	18
105	Polymers with Hemiaminal Ether Linkages for pH-Responsive Antibacterial Materials. ACS Macro Letters, 2021, 10, 365-369.	4.8	18
106	Modulating Protein Corona and Materials–Cell Interactions with Temperatureâ€Responsive Materials. Advanced Functional Materials, 2022, 32, .	14.9	18
107	Qualitative sensing of mechanical damage by a fluorogenic "click―reaction. Chemical Communications, 2016, 52, 11076-11079.	4.1	17
108	Crystallinity Tunes Permeability of Polymer Nanocapsules. Macromolecules, 2017, 50, 4725-4732.	4.8	17

#	Article	IF	Citations
109	The structure of fibers produced by colloid-electrospinning depends on the aggregation state of particles in the electrospinning feed. Polymer, 2017, 127, 101-105.	3.8	17
110	Polymer-corrosion inhibitor conjugates as additives for anticorrosion application. Progress in Organic Coatings, 2022, 163, 106639.	3.9	17
111	Synthesis of hydrophilic polyurethane particles in non-aqueous inverse miniemulsions. Colloid and Polymer Science, 2011, 289, 1111-1117.	2.1	16
112	Recent advances in polymerizations in dispersed media. Advances in Colloid and Interface Science, 2018, 260, 24-31.	14.7	16
113	A straightforward synthesis of fluorescent and temperatureâ€responsive nanogels. Journal of Polymer Science Part A, 2012, 50, 1043-1048.	2.3	15
114	Chemical Routes Toward Multicompartment Colloids. Macromolecular Chemistry and Physics, 2012, 213, 1183-1189.	2.2	15
115	Dual-compartment nanofibres: separation of two highly reactive components in close vicinity. RSC Advances, 2015, 5, 97477-97484.	3.6	15
116	Oligo(thioetherâ€ester)s Blocks in Polyurethanes for Slowly Releasing Active Payloads. Macromolecular Chemistry and Physics, 2018, 219, 1800392.	2.2	15
117	Chitosan Nanocapsules for pHâ€∢riggered Dual Release Based on Corrosion Inhibitors as Model Study. Particle and Particle Systems Characterization, 2018, 35, 1800086.	2.3	15
118	Facile Phaseâ€Separation Approach to Encapsulate Functionalized Polymers in Core–Shell Nanoparticles. Macromolecular Chemistry and Physics, 2014, 215, 198-204.	2.2	14
119	Design of Nanostructured Protective Coatings with a Sensing Function. ACS Applied Materials & Sensing Function. ACS Applied Function	8.0	14
120	Controlled surface mineralization of metal oxides on nanofibers. RSC Advances, 2015, 5, 37340-37345.	3.6	13
121	Multifunctional clickable and protein-repellent magnetic silica nanoparticles. Nanoscale, 2016, 8, 3019-3030.	5.6	13
122	Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromolecular Bioscience, 2018, 18, e1700387.	4.1	13
123	Regulating Payload Release from Hybrid Nanocapsules with Dual Silica/Polycaprolactone Shells. Langmuir, 2019, 35, 11389-11396.	3.5	13
124	Morphology and visible photoluminescence modulation in dye-free mesoporous silica nanoparticles using a simple calcination step. Materials Research Bulletin, 2022, 152, 111842.	5.2	13
125	Temperature responsive copolymers of <i>N</i> à€vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate and their interactions with drugs. Journal of Polymer Science Part A, 2013, 51, 3308-3313.	2.3	12
126	Combining the Best of Two Worlds: Nanoparticles and Nanofibers. Chemistry - an Asian Journal, 2014, 9, 2030-2035.	3.3	12

#	Article	IF	Citations
127	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. ACS Macro Letters, 2015, 4, 171-176.	4.8	12
128	Inflammation-responsive nanocapsules for the dual-release of antibacterial drugs. Chemical Communications, 2020, 56, 12725-12728.	4.1	12
129	Tin(IV) Oxide Coatings from Hybrid Organotin/Polymer Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4292-4298.	8.0	11
130	Dual-responsive multicompartment nanofibers for controlled release of payloads. RSC Advances, 2016, 6, 43767-43770.	3.6	11
131	STED Analysis of Droplet Deformation during Emulsion Electrospinning. Macromolecular Chemistry and Physics, 2017, 218, 1600547.	2.2	11
132	Encapsulation and Release of Functional Nanodroplets Entrapped in Nanofibers. Small, 2018, 14, e1704527.	10.0	11
133	On the Role of Trigger Signal Spreading Velocity for Efficient Self-Healing Coatings for Corrosion Protection. Journal of the Electrochemical Society, 2018, 165, C1017-C1027.	2.9	11
134	PEGylation of shellac-based nanocarriers for enhanced colloidal stability. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110434.	5.0	11
135	Acid-cleavable polymers for simultaneous fast and slow release of functional molecules. Polymer Chemistry, 2020, 11, 4723-4728.	3.9	11
136	Self-reporting of payload release in polymer coatings based on the inner filter effect. Polymer Chemistry, 2020, 11, 1462-1470.	3.9	11
137	Tattooing Plastics with Reversible and Irreversible Encryption. Advanced Science, 2020, 7, 1903785.	11.2	11
138	Biodegradable Harmonophores for Targeted High-Resolution <i>In Vivo</i> Tumor Imaging. ACS Nano, 2021, 15, 4144-4154.	14.6	11
139	Redefining the functions of nanocapsule materials. Nanoscale Horizons, 2016, 1, 268-271.	8.0	10
140	Nanofibrous photocatalysts from electrospun nanocapsules. Nanotechnology, 2017, 28, 405601.	2.6	10
141	Shining a new light on the structure of polyurea/polyurethane materials. Polymer Chemistry, 2021, 12, 3893-3899.	3.9	9
142	A new generation of ultralight thermochromic indicators based on temperature induced gas release. Journal of Materials Chemistry, 2011, 21, 17392.	6.7	8
143	Anisotropic Supports in Metalloceneâ€Catalyzed Polymerizations: Templates to Obtain Polyolefin Fibers. Macromolecular Materials and Engineering, 2014, 299, 1155-1162.	3.6	8
144	Control of the release of functional payloads from redox-responsive nanocapsules. RSC Advances, 2016, 6, 104330-104337.	3.6	8

#	Article	IF	Citations
145	pH-Responsive nanocapsules from silylated copolymers. Polymer Chemistry, 2016, 7, 4330-4333.	3.9	8
146	Breaking Nano-Spaghetti: Bending and Fracture Tests of Nanofibers. Langmuir, 2016, 32, 1389-1395.	3.5	8
147	Photocatalytic degradation of pesticides by nanofibrous membranes fabricated by colloid-electrospinning. Nanotechnology, 2020, 31, 215603.	2.6	8
148	Temperatureâ€Responsive Nanoparticles Enable Specific Binding of Apolipoproteins from Human Plasma. Small, 2022, 18, e2103138.	10.0	8
149	End-of-life indicators based on temperature switchable nanobombs. Journal of Materials Chemistry, 2012, 22, 9909.	6.7	7
150	Transparent and airtight silica nano- and microchannels with uniform tubular cross-section. Soft Matter, 2013, 9, 9824.	2.7	7
151	Encapsulation of emulsion droplets and nanoparticles in nanofibers as sustainable approach for their transport and storage. Journal of Colloid and Interface Science, 2020, 577, 199-206.	9.4	7
152	Compatibility between Drugs and Polymer in Nanoparticles Produced by the Miniemulsionâ€Solvent Evaporation Technique. Macromolecular Materials and Engineering, 2021, 306, 2100102.	3.6	7
153	Dual-Responsive Polymer Conjugates with Enhanced Anticorrosion Performance. ACS Applied Polymer Materials, 0, , .	4.4	7
154	Marrying the incompatible for better: Incorporation of hydrophobic payloads in superhydrophilic hydrogels. Journal of Colloid and Interface Science, 2022, 622, 75-86.	9.4	6
155	From core–shell and Janus structures to tricompartment submicron particles. Polymer, 2014, 55, 715-720.	3.8	5
156	Suppressing non-controlled leakage of hydrophilic payloads from redox-responsive nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 2-7.	4.7	5
157	Encoding materials for programming a temporal sequence of actions. Journal of Materials Chemistry B, 2018, 6, 1433-1448.	5.8	5
158	Encapsulation of polyprodrugs enables an efficient and controlled release of dexamethasone. Nanoscale Horizons, 2021, 6, 791-800.	8.0	5
159	Tuning the Hydrolytic Behavior of Hydroxyquinoline Derivatives for Anticorrosion Applications. Chemistry of Materials, 2022, 34, 2842-2852.	6.7	5
160	Controlling Release Kinetics of Payloads from Polymer Conjugates by Hydrophobicity. Macromolecular Chemistry and Physics, 2019, 220, 1900236.	2.2	4
161	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie, 2020, 132, 20183-20191.	2.0	4
162	Phthalocyanine and encapsulated polyaniline nanoparticles as fillers for dielectric elastomers., 2009,		3

#	Article	IF	CITATIONS
163	Size-Dependent Self-Assembly of Anisotropic Silica-Coated Hybrid Nanoparticles. Macromolecular Chemistry and Physics, 2015, 216, 2070-2079.	2.2	3
164	Stabilization of Inverse Miniemulsions by Silyl-Protected Homopolymers. Polymers, 2016, 8, 303.	4. 5	3
165	pH-Responsive Nanofibers for Precise and Sequential Delivery of Multiple Payloads. ACS Applied Bio Materials, 2019, 2, 4283-4290.	4.6	3
166	From In Silico to Experimental Validation: Tailoring Peptide Substrates for a Serine Protease. Biomacromolecules, 2020, 21, 1636-1643.	5.4	3
167	Monitoring the hygrothermal response of poly(vinyl methyl ether) submicron films using AFM. European Polymer Journal, 2012, 48, 209-216.	5.4	2
168	The Cushion Method: A New Technique for the Recovery of Hydrophilic Nanocarriers. Langmuir, 2016, 32, 13669-13674.	3.5	2
169	Nanocapsules with excellent biocompatibility and stability in protein solutions. Biomaterials Science, 2021, 9, 5781-5784.	5.4	2
170	Coatings with green corrosion-responsive conjugates. Journal of Industrial and Engineering Chemistry, 2021, 97, 500-505.	5.8	2
171	<scp>Stimuliâ€responsive</scp> polymeric additives for anticorrosion. Journal of Applied Polymer Science, 2022, 139, 51730.	2.6	2
172	New approach using fluorescent nanosensors for filiform corrosion inhibition. Materials Letters, 2022, 318, 132240.	2.6	2
173	Testing heat and mass transfer through membranes and coatings for textiles. , 2010, , 95-122.		1
174	Directed Assembly of Soft Anisotropic Nanoparticles by Colloid Electrospinning. Macromolecular Rapid Communications, 2016, 37, 1598-1602.	3.9	1
175	2. Green processes and green fibers. , 2019, , 11-40.		1
176	Nanofibrous Patches for Repairing Cracked Surfaces. Advanced Materials Interfaces, 2021, 8, 2001492.	3.7	1
177	Preparation of nanoparticles of shellac and shellac-oligomer conjugates. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 228-240.	2.2	1
178	Smart Coatings: Nanonetwork Composite Coating for Sensing and Corrosion Inhibition (Adv. Mater.) Tj ETQq0 0 (O ggBT /Ov	erlock 10 Tf
179	Nanofibrous Patches: Nanofibrous Patches for Repairing Cracked Surfaces (Adv. Mater. Interfaces) Tj ETQq1 1 0.7	84314 rgE 3.7	BT ₀ /Overlock
180	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie, 2021, 133, 18242-18250.	2.0	0