
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€Healing Allâ€inâ€One Energy Storage for Flexible Selfâ€Powering Ammonia Smartsensors. Energy and Environmental Materials, 2022, 5, 986-995.	7.3	26
2	Tunable metallic-like transport in polypyrrole. Materials Futures, 2022, 1, 011001.	3.1	11
3	Fluorine-Rich Interphase and Desolvation Regulation for a Long-Life and High-Rate TiS ₂ -Based Li-Metal Battery. Journal of Physical Chemistry C, 2022, 126, 5122-5130.	1.5	1
4	The influence of crystal growth mechanism based on various sulfur sources on the morphology, component and electrochemical performance of cobalt sulfide as anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 907, 164483.	2.8	2
5	Recent progresses of metal-organic framework-based materials in electrochemical energy storage. Materials Today Sustainability, 2022, 19, 100174.	1.9	4
6	Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates. Journal of the American Chemical Society, 2022, 144, 11168-11177.	6.6	94
7	Selective ion transport in assembled graphene oxide-modified separator and the novel intra-series architecture for improved aqueous batteries. Chemical Engineering Journal, 2022, 450, 138061.	6.6	4
8	The balanced improvement of electrochemical performance of cobalt disulfide anode material for sodium-ion batteries by constructing reduced graphene oxide conductive network based on "bucket principle― Journal of Alloys and Compounds, 2022, 922, 166235.	2.8	1
9	Reduced Graphene Oxide-Polypyrrole Aerogel-Based Coaxial Heterogeneous Microfiber Enables Ultrasensitive Pressure Monitoring of Living Organisms. ACS Applied Materials & Interfaces, 2021, 13, 5425-5434.	4.0	21
10	Research Progress and Practical Challenges of Aqueous Sodium-Ion Batteries. Acta Chimica Sinica, 2021, 79, 388.	0.5	11
11	Recent advances in the photothermal applications of two-dimensional nanomaterials: photothermal therapy and beyond. Journal of Materials Chemistry A, 2021, 9, 17569-17591.	5.2	84
12	All-in-One ENERGISER design: Smart liquid metal-air battery. Chemical Engineering Journal, 2021, 409, 128160.	6.6	12
13	Ultrahigh Sensitive Wearable Pressure Sensors Based on Reduced Graphene Oxide/Polypyrrole Foam for Sign Language Translation. Advanced Materials Technologies, 2021, 6, 2001188.	3.0	15
14	Effects of disorder and hydrostatic pressure on charge density wave and superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>HPhysical Review B, 2021, 103, .</mml:mi></mml:mrow></mml:math 	ni> <td>mrow><mml:r< td=""></mml:r<></td>	mrow> <mml:r< td=""></mml:r<>
15	<i>In Situ</i> Construction of a Multifunctional Quasi-Gel Layer for Long-Life Aqueous Zinc Metal Anodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 29746-29754.	4.0	31
16	Recent Progresses on Applications of Conducting Polymers for Modifying Electrode of Rechargeable Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100088.	2.8	19
17	A Polyester/Polypyrrole Textileâ€Based Ultrasensitive Wearable Microdistance Sensor. Macromolecular Materials and Engineering, 2021, 306, 2100478.	1.7	3
18	Bioinspired Gasâ€Confined Hollow Microfiber with 2D Conducting Polymer/Graphene Skeleton for Ultrasensitive Liquid Environment Sensor. Advanced Materials Interfaces, 2021, 8, .	1.9	2

#	Article	IF	CITATIONS
19	Cold direct pen writing of reduced graphene oxide foams for ultrasensitive micro-contact force probing. Carbon, 2020, 157, 140-146.	5.4	17
20	Selfâ€Healing and Shapeâ€Memory Superconducting Devices. Macromolecular Materials and Engineering, 2020, 305, 1900581.	1.7	8
21	Graphene/high-oriented polypyrrole foam enables new-type ultrasensitive micro-distance detection. Chemical Engineering Journal, 2020, 402, 126236.	6.6	12
22	Highly Efficient Photothermal Conversion of Ti ₃ C ₂ T <i>_x</i> /lonic Liquid Gel Pen Ink for Smoothly Writing Ultrasensitive, Wide-Range Detecting, and Flexible Thermal Sensors. ACS Applied Materials & Interfaces, 2020, 12, 37637-37646.	4.0	38
23	Light-induced electrostatic lithography: selective discharge of electrets by utilizing photothermal conversion of Ti ₃ C ₂ T _x MXene. Journal of Materials Chemistry A, 2020, 8, 19022-19027.	5.2	9
24	Superconducting phase diagrams of S-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>Hmathvariant="normal">Se</mml:mi><mml:mn>2</mml:mn></mml:mrow> under hydrostatic pressure. Physical Review B, 2020, 102, .</mml:math 	i> {mml:m 1.1	text>â^'
25	Ultrahigh photothermal temperature in a graphene/conducting polymer system enables contact thermochemical reaction. Journal of Materials Chemistry A, 2020, 8, 10891-10897.	5.2	20
26	A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors. Chemical Communications, 2020, 56, 7965-7968.	2.2	18
27	Single crystal growth and ferromagnetism of Cr-doped Sb4Te3. Journal of Physics Condensed Matter, 2020, 32, 235801.	0.7	1
28	Highly Selective Wearable Smartsensors for Vapor/Liquid Amphibious Methanol Monitoring. Analytical Chemistry, 2020, 92, 5897-5903.	3.2	14
29	A Universal Approach to Aqueous Energy Storage via Ultralowâ€Cost Electrolyte with Superâ€Concentrated Sugar as Hydrogenâ€Bondâ€Regulated Solute. Advanced Materials, 2020, 32, e2000074.	11.1	110
30	Realizing Longâ€Range Orientational Order in Conjugated Polymers via Solventless Polymerization Strategy. Macromolecular Chemistry and Physics, 2020, 221, 1900534.	1.1	14
31	Enhanced Ion Conduction via Epitaxially Polymerized Two-Dimensional Conducting Polymer for High-Performance Cathode in Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9347-9354.	4.0	35
32	Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction. Chinese Physics B, 2020, 29, 047503.	0.7	2
33	Highly faceted layered orientation in SnSSe nanosheets enables facile Li+-Diffusion channels. Electrochimica Acta, 2019, 318, 937-948.	2.6	11
34	Improved Li+ diffusion enabled by SEI film in a high-energy-density hybrid magnesium-ion battery. Journal of Power Sources, 2019, 441, 227190.	4.0	10
35	Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. Journal of Materials Chemistry A, 2019, 7, 1749-1755.	5.2	75
36	A graphene-based smart thermal conductive system regulated by a reversible pressure-induced mechanism. Nanoscale, 2019, 11, 11730-11735.	2.8	4

#	Article	IF	CITATIONS
37	Tailorable graphene-based superconducting films via self-assembly and in-situ doping. Carbon, 2019, 152, 527-531.	5.4	2
38	Self-assembled ultrathin film of CNC/PVA–liquid metal composite as a multifunctional Janus material. Materials Horizons, 2019, 6, 1643-1653.	6.4	67
39	Recent Research on Strategies to Improve Ion Conduction in Alkali Metalâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 403-427.	2.4	32
40	Facile Wearable Vapor/Liquid Amphibious Methanol Sensor. ACS Sensors, 2019, 4, 152-160.	4.0	41
41	Ab Initio Design of Graphene Block Enables Ultrasensitivity, Multimeterâ€Like Range Switchable Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1800531.	3.0	13
42	Li/K mixed superconcentrated aqueous electrolyte enables high-performance hybrid aqueous supercapacitors. Energy Storage Materials, 2019, 20, 373-379.	9.5	46
43	Inkjet printed 2D SnS ₂ nanosheets for ammonia gas sensor. Materials Research Express, 2019, 6, 015025.	0.8	10
44	Engineering Fast Ion Conduction and Selective Cation Channels for a Highâ€Rate and Highâ€Voltage Hybrid Aqueous Battery. Angewandte Chemie, 2018, 130, 7164-7168.	1.6	12
45	Mutual Independence Ensured Long-Term Cycling Stability: Template-Free Electrodeposited Sn ₄ Ni ₃ Nanoparticles as Anode Material for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 312-318.	2.5	5
46	Advanced Composite 2D Energy Materials by Simultaneous Anodic and Cathodic Exfoliation. Advanced Energy Materials, 2018, 8, 1702794.	10.2	41
47	Engineering Fast Ion Conduction and Selective Cation Channels for a Highâ€Rate and Highâ€Voltage Hybrid Aqueous Battery. Angewandte Chemie - International Edition, 2018, 57, 7046-7050.	7.2	71
48	Touching the theoretical capacity: synthesizing cubic LiTi ₂ (PO ₄) ₃ /C nanocomposites for high-performance lithium-ion battery. Nanoscale, 2018, 10, 6282-6287.	2.8	11
49	Liquid Exfoliation of Few-layer 1T-TaS2â^'x Se x Superconductors. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1005-1011.	0.8	3
50	Auto-generated iron chalcogenide microcapsules ensure high-rate and high-capacity sodium-ion storage. Nanoscale, 2018, 10, 800-806.	2.8	25
51	An open holey structure enhanced rate capability in a NaTi ₂ (PO ₄) ₃ /C nanocomposite and provided ultralong-life sodium-ion storage. Nanoscale, 2018, 10, 958-963.	2.8	41
52	Size Engineering and Crystallinity Control Enable Highâ€Capacity Aqueous Potassiumâ€lon Storage of Prussian White Analogues. ChemElectroChem, 2018, 5, 3887-3892.	1.7	48
53	Rapid Sonochemical Synthesis of an Intercalated Superconductor. ChemistrySelect, 2018, 3, 5652-5659.	0.7	1
54	Noncontact and Highâ€Accuracy Smart Thermosensors Based on the Thermalâ€Field Resistivity Response of Conducting Polymers. Advanced Materials Technologies, 2018, 3, 1800086.	3.0	0

#	Article	IF	CITATIONS
55	Highly sensitive pressure sensors based on conducting polymer-coated paper. Sensors and Actuators B: Chemical, 2018, 273, 1195-1201.	4.0	37
56	Highly Sensitive Wearable Pressure Sensors Based on Three-Scale Nested Wrinkling Microstructures of Polypyrrole Films. ACS Applied Materials & Interfaces, 2018, 10, 25811-25818.	4.0	115
57	Titelbild: Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery (Angew. Chem. 24/2018). Angewandte Chemie, 2018, 130, 7065-7065.	1.6	0
58	Magnetotransport properties in a compensated semimetal gray arsenic. Physical Review B, 2017, 95, .	1.1	22
59	Size-tunable, highly sensitive microelectrode arrays enabled by polymer pen lithography. Soft Matter, 2017, 13, 3685-3689.	1.2	12
60	Porous nitrogen–doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO. Electrochimica Acta, 2017, 245, 561-568.	2.6	76
61	Superconducting Continuous Graphene Fibers <i>via</i> Calcium Intercalation. ACS Nano, 2017, 11, 4301-4306.	7.3	47
62	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Đimensional Engineering of the Bulk Material. Angewandte Chemie - International Edition, 2017, 56, 14718-14722.	7.2	164
63	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Đimensional Engineering of the Bulk Material. Angewandte Chemie, 2017, 129, 14910-14914.	1.6	58
64	Unique Reversible Conversion-Type Mechanism Enhanced Cathode Performance in Amorphous Molybdenum Polysulfide. ACS Applied Materials & Interfaces, 2017, 9, 38606-38611.	4.0	42
65	Conducting Polymer Based Visualâ€Aided Smart Thermosensors on Arbitrary Substrates. Advanced Functional Materials, 2017, 27, 1702706.	7.8	23
66	Unprecedented sensitivity towards pressure enabled by graphene foam. Nanoscale, 2017, 9, 19346-19352.	2.8	40
67	Buffer layer enhanced stability of sodium-ion storage. Journal of Power Sources, 2017, 369, 138-145.	4.0	28
68	Towards a better Sn: Efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets. Nano Energy, 2017, 31, 270-277.	8.2	261
69	Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors. Functional Materials Letters, 2017, 10, 1750081.	0.7	59
70	Sodiumâ€Ion Batteries: Novel Metal Chalcogenide SnSSe as a Highâ€Capacity Anode for Sodiumâ€Ion Batteries (Adv. Mater. 39/2016). Advanced Materials, 2016, 28, 8786-8786.	11.1	4
71	Novel Metal Chalcogenide SnSSe as a High apacity Anode for Sodiumâ€ l on Batteries. Advanced Materials, 2016, 28, 8645-8650.	11.1	123
72	Highâ€Oriented Polypyrrole Nanotubes for Nextâ€Generation Gas Sensor. Advanced Materials, 2016, 28, 8265-8270.	11.1	128

#	Article	IF	CITATIONS
73	Emergence of superconductivity in doped glassy-carbon. Carbon, 2016, 99, 585-590.	5.4	29
74	Atom-Thin SnS2–xSex with Adjustable Compositions by Direct Liquid Exfoliation from Single Crystals. ACS Nano, 2016, 10, 755-762.	7.3	39
75	Supercapacitors: Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes (Adv. Funct. Mater. 29/2015). Advanced Functional Materials, 2015, 25, 4562-4562.	7.8	3
76	Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Physical Review X, 2015, 5, .	2.8	996
77	Rewriting the Superconductivity in Ironâ€Based Superconductors by Lithiumâ€Ion Insertion and Extraction. Advanced Materials, 2015, 27, 4224-4228.	11.1	27
78	Conjugated Polymers: Singleâ€Crystalâ€Conjugated Polymers with Extremely High Electron Sensitivity through Templateâ€Assisted In Situ Polymerization (Adv. Mater. 39/2015). Advanced Materials, 2015, 27, 5850-5850.	11.1	0
79	Singleâ€Crystalâ€Conjugated Polymers with Extremely High Electron Sensitivity through Templateâ€Assisted In Situ Polymerization. Advanced Materials, 2015, 27, 5923-5929.	11.1	39
80	Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes. Advanced Functional Materials, 2015, 25, 4601-4606.	7.8	79
81	Direct Pen Writing of Highâ€∢i>T _c , Flexible Magnesium Diboride Superconducting Arrays. Advanced Materials, 2015, 27, 3614-3619.	11.1	21
82	Superconductivity: Rewriting the Superconductivity in Ironâ€Based Superconductors by Lithiumâ€lon Insertion and Extraction (Adv. Mater. 28/2015). Advanced Materials, 2015, 27, 4106-4106.	11.1	0
83	Carbonized poly(vinylidene fluoride)/graphene oxide with three-dimensional multiscale-pore architecture as an advanced electrode material. Journal of Materials Chemistry A, 2015, 3, 7715-7718.	5.2	34
84	Gradual-order enhanced stability: a frozen section of electrospun nanofibers for energy storage. Nanoscale, 2015, 7, 8715-8719.	2.8	19
85	Colloidal Pen Lithography. Small, 2015, 11, 548-552.	5.2	11
86	Ultralow-limit gas detection in nano-dumbbell polymer sensor via electrospinning. Nanoscale, 2013, 5, 1803.	2.8	41
87	Fabrication of Ultrafine Soft-Matter Arrays by Selective Contact Thermochemical Reaction. Scientific Reports, 2013, 3, .	1.6	8
88	Fabrication of ultra-fine nanostructures using edge transfer printing. Nanoscale, 2012, 4, 1939.	2.8	21
89	Superconductivity in Potassium-Doped Few-Layer Graphene. Journal of the American Chemical Society, 2012, 134, 6536-6539.	6.6	106
90	Superconductivity above 30 K in alkali-metal-doped hydrocarbon. Scientific Reports, 2012, 2, 389.	1.6	155

#	Article	IF	CITATIONS
91	Structureâ€Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns. Advanced Functional Materials, 2012, 22, 1284-1290.	7.8	241
92	Flexible Au nanoparticle arrays induced metal-enhanced fluorescence towards pressure sensors. Journal of Materials Chemistry, 2011, 21, 5234.	6.7	24
93	Facile Patterning of Reduced Graphene Oxide Film into Microelectrode Array for Highly Sensitive Sensing. Analytical Chemistry, 2011, 83, 6426-6430.	3.2	63
94	Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale, 2011, 3, 2703.	2.8	138
95	Facile Fabrication of Metallic Nanostructures by Tunable Cracking and Transfer Printing. Angewandte Chemie - International Edition, 2011, 50, 12478-12482.	7.2	25
96	Fabrication of Goldâ€Directed Conducting Polymer Nanoarrays for Highâ€Performance Gas Sensor. Chemistry - an Asian Journal, 2010, 5, 2266-2270.	1.7	27
97	Selective Discharge of Electrostatic Charges on Electrets Using a Patterned Hydrogel Stamp. Angewandte Chemie - International Edition, 2010, 49, 5537-5540.	7.2	44
98	Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochimica Acta, 2010, 55, 5813-5818.	2.6	234
99	Thermochemical Patterning of Polymer Thin Films With Tunable Sizeâ€Reduction Effects Using Metalâ€Coated Poly(dimethylsiloxane) Stamps. Advanced Materials, 2009, 21, 2211-2215.	11.1	26
100	Thinner is Better: An Ultrathin Conducting Oligoaniline Film for Gas Microsensors with Ultralow Detection Limits. Macromolecular Rapid Communications, 2009, 30, 1589-1593.	2.0	6
101	Patterning of Electrostatic Charge on Electrets Using Hot Microcontact Printing. Angewandte Chemie - International Edition, 2009, 48, 6699-6703.	7.2	46
102	Transfer Printing of Metal Nanoparticles with Controllable Dimensions, Placement, and Reproducible Surface-Enhanced Raman Scattering Effects. Langmuir, 2009, 25, 4347-4351.	1.6	48
103	Processing of Graphene for Electrochemical Application: Noncovalently Functionalize Graphene Sheets with Water-Soluble Electroactive Methylene Green. Langmuir, 2009, 25, 12006-12010.	1.6	225
104	Processing Matters: In situ Fabrication of Conducting Polymer Microsensors Enables Ultralowâ€Limit Gas Detection. Advanced Materials, 2008, 20, 2145-2150.	11.1	40
105	Fabrication of ultrafine protein arrays on easy-fabricated metallic nanostructures. Scripta Materialia, 2008, 58, 854-857.	2.6	7
106	Twoâ€Ðimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion Applications. , 0, , .		2