Eduardo A Fernandez-Tarrazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278161/publications.pdf Version: 2024-02-01

Eduardo A

#	Article	IF	CITATIONS
1	A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combustion and Flame, 2006, 147, 32-38.	2.8	145
2	Lewis number effect on the propagation of premixed laminar flames in narrow open ducts. Combustion and Flame, 2002, 128, 382-394.	2.8	80
3	Experimental and numerical study of premixed flame flashback. Proceedings of the Combustion Institute, 2007, 31, 1275-1282.	2.4	78
4	Flame flashback and propagation of premixed flames near a wall. Proceedings of the Combustion Institute, 2000, 28, 1883-1889.	2.4	67
5	Experimental analysis of oscillatory premixed flames in a Hele-Shaw cell propagating towards a closed end. Combustion and Flame, 2019, 201, 1-11.	2.8	50
6	The chemistry involved in the third explosion limit of H2–O2 mixtures. Combustion and Flame, 2014, 161, 111-117.	2.8	45
7	A multipurpose reduced mechanism for ethanol combustion. Combustion and Flame, 2018, 193, 112-122.	2.8	42
8	Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air. Combustion and Flame, 2006, 144, 261-276.	2.8	37
9	Diffusion flame attachment and lift-off in the near wake of a fuel injector. Proceedings of the Combustion Institute, 2000, 28, 2125-2131.	2.4	29
10	Pinch-off in forced and non-forced, buoyant laminar jet diffusion flames. Combustion and Flame, 2012, 159, 161-169.	2.8	27
11	Unexpected Propagation of Ultra-Lean Hydrogen Flames in Narrow Gaps. Physical Review Letters, 2020, 124, 174501.	2.9	25
12	Heat Transfer From a Circular Cylinder at Low Reynolds Numbers. Journal of Heat Transfer, 1998, 120, 72-75.	1.2	19
13	A multipurpose reduced chemical-kinetic mechanism for methanol combustion. Combustion Theory and Modelling, 2016, 20, 613-631.	1.0	19
14	Theoretical and numerical analysis of the evaporation of mono- and multicomponent single fuel droplets. Journal of Fluid Mechanics, 2021, 910, .	1.4	19
15	Flammability conditions for ultra-lean hydrogen premixed combustion based on flame-ball analyses. International Journal of Hydrogen Energy, 2012, 37, 1813-1825.	3.8	18
16	The structure of lean hydrogen-air flame balls. Proceedings of the Combustion Institute, 2011, 33, 1203-1210.	2.4	17
17	Minimum ignition energy of methanol–air mixtures. Combustion and Flame, 2016, 171, 234-236.	2.8	14
18	LIFTED LAMINAR JET DIFFUSION FLAMES. Combustion Science and Technology, 2005, 177, 933-953.	1.2	13

Eduardo A

#	Article	IF	CITATIONS
19	Hydrogen-air mixing-layer ignition at temperatures below crossover. Combustion and Flame, 2013, 160, 1981-1989.	2.8	12
20	lgnition time of hydrogen–air diffusion flames. Comptes Rendus - Mecanique, 2012, 340, 882-893.	2.1	8
21	Flame spread over solid fuels in opposite natural convection. Proceedings of the Combustion Institute, 2002, 29, 219-225.	2.4	7
22	The anchoring of gaseous jet diffusion flames in stagnant air. Aerospace Science and Technology, 2002, 6, 507-516.	2.5	6
23	Analysis of an idealized counter-current microchannel-based reactor to produce hydrogen-rich syngas from methanol. International Journal of Hydrogen Energy, 2019, 44, 23807-23820.	3.8	6
24	Modified multipurpose reduced chemistry for ethanol combustion. Combustion and Flame, 2020, 215, 221-223.	2.8	6
25	Numerical analysis of the autoignition of isolated wet ethanol droplets immersed in a hot and humid air atmosphere. Combustion and Flame, 2021, 226, 42-52.	2.8	5
26	Micro-combustion modelling with RBF-FD: A high-order meshfree method for reactive flows in complex geometries. Applied Mathematical Modelling, 2021, 94, 635-655.	2.2	4
27	Multiple combustion regimes and performance of a counter-flow microcombustor with power extraction. Mathematical Modelling of Natural Phenomena, 2018, 13, 52.	0.9	3
28	Regimes of boundary-layer ignition by heat release from a localized energy source. Proceedings of the Combustion Institute, 2017, 36, 1467-1473.	2.4	2