
Zhenggang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 2014, 81, 428-441.	7.9	1,387
2	Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature Communications, 2016, 7, 10602.	12.8	1,175
3	Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics, 2014, 46, 131-140.	3.9	671
4	Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. Journal of Alloys and Compounds, 2015, 647, 815-822.	5.5	281
5	Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Materialia, 2016, 120, 108-119.	7.9	243
6	Weldability of a high entropy CrMnFeCoNi alloy. Scripta Materialia, 2016, 124, 81-85.	5.2	130
7	Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 217-224.	5.6	108
8	Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Science and Technology of Welding and Joining, 2018, 23, 585-595.	3.1	70
9	Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Current Opinion in Solid State and Materials Science, 2017, 21, 267-284.	11.5	66
10	Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy. Scripta Materialia, 2015, 109, 108-112.	5.2	65
11	Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature. Materials and Design, 2017, 131, 419-427.	7.0	54
12	Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy. Journal of Materials Research, 2018, 33, 3301-3309.	2.6	51
13	Strengthening in Al-, Mo- or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison. Journal of Materials Science and Technology, 2021, 94, 264-274.	10.7	44
14	Phase, microstructure and related mechanical properties of a series of (NbTaZr)C-Based high entropy ceramics. Ceramics International, 2021, 47, 14341-14347.	4.8	38
15	Design high-entropy carbide ceramics from machine learning. Npj Computational Materials, 2022, 8, .	8.7	37
16	Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy. Journal of Materials Science and Technology, 2021, 60, 35-43.	10.7	36
17	Microstructure and mechanical properties of AlCoCrFeNi high entropy alloys produced by spark plasma sintering. Materials Research Express, 2019, 6, 0865e7.	1.6	18
18	Toughening (NbTaZrW)C highâ€entropy carbide ceramic through Mo doping. Journal of the American Ceramic Society, 2022, 105, 5395-5407.	3.8	15

ZHENGGANG WU

#	Article	IF	CITATIONS
19	Oxidation behavior of (NbTaZrW)C high-entropy carbide at 800–1000°C. Materials Characterization, 2022, 189, 111932.	4.4	13
20	Dissimilar Materials Joining of Carbon Fiber Polymer to Dual Phase 980 by Friction Bit Joining, Adhesive Bonding, and Weldbonding. Metals, 2018, 8, 865.	2.3	11
21	Concentration of "Mysterious Solute―in CoCrFeNi high entropy alloy. Scripta Materialia, 2022, 211, 114504.	5.2	11
22	Microstructure and Mechanical Properties of Cold Drawn Ti–Nb–Ta–Zr–O Wires for Orthodontic Applications. Metals and Materials International, 2020, 26, 973-978.	3.4	7
23	Softening Al13Fe4 intermetallic compound through Fe-site multi-principal-element doping. Scripta Materialia, 2022, 218, 114811.	5.2	6
24	Effect of Electromagnetic Stirring Position on Uniform Direct Chill Casting of Large-Sized 7005 Alloy Billet. Jom, 2020, 72, 4665-4673.	1.9	4
25	Investigation on microstructure and properties of dissimilar joint between TRIP800 and QP980 fabricated by laser welding. Science and Technology of Welding and Joining, 2021, 26, 161-172.	3.1	3

26 Nature of CoCrFeMnNi/Fe and CoCrFeMnNi/Al Solid/Solid Interface. Acta Metallurgica Sinica (English) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

27	Strength-Ductility Synergy in a Metastable β Titanium Alloy by Stress Induced Interfacial Twin Boundary ï‰ Phase at Cryogenic Temperatures. Materials, 2020, 13, 4732.	2.9	1
28	Atomic scale environmental transmission electron microscopy study of the surface mobility of ceria nanocubes. Microscopy and Microanalysis, 2017, 23, 898-899.	0.4	0
29	Visualizing and Quantifying the Cationic Mobility at {100} Surfaces of Ceria: Application to CO2 Adsorption/Desorption Phenomena in the Environmental Transmission Electron Microscope. Microscopy and Microanalysis, 2018, 24, 1940-1941.	0.4	0