
Weizong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5277890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permeation by Electrowetting Actuation: Revealing the Prospect of a Micro-valve Based on Ionic Liquid. Journal of Colloid and Interface Science, 2022, 608, 114-119.	9.4	8
2	Molecular dynamics simulation of ionic liquid electrospray: Microscopic presentation of the effects of mixed ionic liquids. International Journal of Heat and Mass Transfer, 2022, 182, 121983.	4.8	11
3	Radio-frequency biasing of ion acceleration grids with different propellants. Plasma Sources Science and Technology, 2022, 31, 035009.	3.1	8
4	Mode transition of the cylindrical Hall thruster with the near-anode cusp magnetic field. Plasma Sources Science and Technology, 2022, 31, 045004.	3.1	3
5	A study on the ionization mechanisms in a miniaturized cylindrical Hall thruster. Vacuum, 2022, 201, 111060.	3.5	2
6	Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling. Plasma Sources Science and Technology, 2022, 31, 055014.	3.1	8
7	Influence of the upstream axial magnetic mirror field on the plume characteristics in the full cylindrical Hall thruster. Acta Astronautica, 2022, 196, 186-193.	3.2	9
8	Molecular dynamics simulation of ionic liquid electrospray: Revealing the effects of interaction potential models. Acta Astronautica, 2021, 179, 581-593.	3.2	14
9	Exosomes secreted from mesenchymal stem cells mediate the regeneration of endothelial cells treated with rapamycin by delivering pro-angiogenic microRNAs. Experimental Cell Research, 2021, 399, 112449.	2.6	9
10	Numerical investigation of ion collection by a planar probe in stationary and parallel flowing plasmas. Journal Physics D: Applied Physics, 2021, 54, 245202.	2.8	2
11	Plasma propagation in a single bead DBD reactor at different dielectric constants: insights from fluid modelling. Journal Physics D: Applied Physics, 2021, 54, 214004.	2.8	16
12	Association of dipeptidyl peptidase IV polymorphism, serum lipid profile, and coronary artery stenosis in patients with coronary artery disease and type 2 diabetes. Medicine (United States), 2021, 100, e25209.	1.0	6
13	Ionic liquid electrospray behavior in a hybrid emitter electrospray thruster. International Journal of Heat and Mass Transfer, 2021, 175, 121369.	4.8	11
14	Numerical investigation of plasma behavior in a micro DC ion thruster using the particle-in-cell/Monte Carlo collision (PIC/MCC) method. Journal Physics D: Applied Physics, 2021, 54, 445202.	2.8	8
15	The dynamic evolution and interaction with dielectric material of the discharge in packed bed reactor. Plasma Sources Science and Technology, 2020, 29, 055004.	3.1	29
16	H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma. Plasma Chemistry and Plasma Processing, 2020, 40, 1163-1187.	2.4	13
17	Burning questions of plasma catalysis: Answers by modeling. Catalysis Today, 2019, 337, 3-14.	4.4	62
18	Sputtering distribution of LIPS200 ion thruster plume. Acta Astronautica, 2019, 160, 7-14.	3.2	13

#	Article	IF	CITATIONS
19	Modeling Plasma-based CO ₂ and CH ₄ Conversion in Mixtures with N ₂ , O ₂ , and H ₂ O: The Bigger Plasma Chemistry Picture. Journal of Physical Chemistry C, 2018, 122, 8704-8723.	3.1	111
20	Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chemical Engineering Journal, 2018, 334, 2467-2479.	12.7	141
21	Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: A chemical kinetics study. Chemical Engineering Journal, 2018, 345, 67-78.	12.7	81
22	Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results?. Journal Physics D: Applied Physics, 2018, 51, 204003.	2.8	24
23	Modeling for a Better Understanding of Plasma-Based CO2 Conversion. , 2018, , .		1
24	Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol. Scientific Reports, 2018, 8, 15929.	3.3	33
25	Warm plasma activation of CO2 in a rotating gliding arc discharge reactor. Journal of CO2 Utilization, 2018, 27, 472-479.	6.8	60
26	Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms. ACS Applied Energy Materials, 2018, 1, 4824-4839.	5.1	116
27	Importance of surface charging during plasma streamer propagation in catalyst pores. Plasma Sources Science and Technology, 2018, 27, 065009.	3.1	35
28	Association of pre-ablation level of potential blood markers with atrial fibrillation recurrence after catheter ablation: a meta-analysis. Europace, 2017, 19, euw088.	1.7	42
29	Wall ablation of heated compound-materials into non-equilibrium discharge plasmas. Journal Physics D: Applied Physics, 2017, 50, 074005.	2.8	19
30	Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. ChemSusChem, 2017, 10, 2145-2157.	6.8	155
31	Numerical analysis of direct-current microdischarge for space propulsion applications using the particle-in-cell/Monte Carlo collision (PIC/MCC) method. Journal Physics D: Applied Physics, 2017, 50, 165203.	2.8	13
32	CO ₂ conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Science and Technology, 2017, 26, 063001.	3.1	90
33	Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion. ChemSusChem, 2017, 10, 2642-2652.	6.8	114
34	Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. ChemSusChem, 2017, 10, 2110-2110.	6.8	17
35	Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. Journal of Molecular and Cellular Cardiology, 2017, 108, 73-85.	1.9	64
36	CO ₂ Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency. Journal of Physical Chemistry C, 2017, 121, 24470-24479.	3.1	46

#	Article	IF	CITATIONS
37	Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications. Journal Physics D: Applied Physics, 2017, 50, 395204.	2.8	6
38	Gliding arc plasma for CO2 conversion: Better insights by a combined experimental and modelling approach. Chemical Engineering Journal, 2017, 330, 11-25.	12.7	97
39	Quasiâ€Neutral Modeling of Gliding Arc Plasmas. Plasma Processes and Polymers, 2017, 14, 1600110.	3.0	24
40	Modeling plasma-based CO ₂ conversion: crucial role of the dissociation cross section. Plasma Sources Science and Technology, 2016, 25, 055016.	3.1	87
41	Effective ionisation coefficients and critical breakdown electric field of CO ₂ at elevated temperature: effect of excited states and ion kinetics. Plasma Sources Science and Technology, 2016, 25, 055025.	3.1	23
42	CO ₂ conversion in a gliding arc plasma: 1D cylindrical discharge model. Plasma Sources Science and Technology, 2016, 25, 065012.	3.1	65
43	Atrial Heterogeneous Autonomic Neural Remodeling in Rabbits with Experimental Atrial Fibrillation and the Effect of Intervention by Rosuvastatin. PACE - Pacing and Clinical Electrophysiology, 2016, 39, 598-606.	1.2	4
44	Longâ€Term Effects of Atrial Ganglionated Plexi Ablation on Function and Structure of Sinoatrial and Atrioventricular Node in Canine. PACE - Pacing and Clinical Electrophysiology, 2015, 38, 1181-1191.	1.2	3
45	Transcriptome Analysis of Canine Cardiac Fat Pads: Involvement of Two Novel Long Non-Coding RNAs in Atrial Fibrillation Neural Remodeling. Journal of Cellular Biochemistry, 2015, 116, 809-821.	2.6	25
46	Long-Term Effects of Ganglionated Plexi Ablation on Electrophysiological Characteristics and Neuron Remodeling in Target Atrial Tissues in a Canine Model. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 1276-1283.	4.8	18
47	Influence of ablated PTFE vapor entrainment on critical dielectric strength of hot SF6gas. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 1478-1485.	2.9	7
48	Transport Coefficients of High Temperature SF6–He Mixtures Used in Switching Applications as an Alternative to Pure SF6. Plasma Chemistry and Plasma Processing, 2014, 34, 899-916.	2.4	11
49	Perioperative Anticoagulation Management in Patients on Chronic Oral Anticoagulant Therapy Undergoing Cardiac Devices Implantation: A Metaâ€Analysis. PACE - Pacing and Clinical Electrophysiology, 2014, 37, 1573-1586.	1.2	27
50	Prediction of critical dielectric strength of hot CF ₄ gas in the temperature range of 300-3500 K. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 129-137.	2.9	21
51	Fundamental properties of high-temperature SF ₆ mixed with CO ₂ as a replacement for SF ₆ in high-voltage circuit breakers. Journal Physics D: Applied Physics, 2014, 47, 255201.	2.8	18
52	Transport Coefficients of High Temperature SF ₆ in Local Thermodynamic Equilibrium Using a Phenomenological Approach. Chinese Physics Letters, 2014, 31, 035202.	3.3	2
53	Investigation of \${m SF}_{6}\$ Arc Characteristics Under Shock Condition in a Supersonic Nozzle With Hollow Contact. IEEE Transactions on Plasma Science, 2013, 41, 915-928.	1.3	20
54	Theoretical investigation of the decay of an SF ₆ gas-blast arc using a two-temperature hydrodynamic model. Journal Physics D: Applied Physics, 2013, 46, 065203.	2.8	28

#	Article	IF	CITATIONS
55	Nonuniqueness of two-temperature Guldberg-Waage and Saha equations: Influence on thermophysical properties of SF6 plasmas. Physics of Plasmas, 2013, 20, .	1.9	16
56	Dielectric breakdown properties of hot SF6/He mixtures predicted from basic data. Physics of Plasmas, 2013, 20, .	1.9	27
57	Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications. Journal of Applied Physics, 2013, 114, 103301.	2.5	41
58	MicroRNA-1 Accelerates the Shortening of Atrial Effective Refractory Period by Regulating KCNE1 and KCNB2 Expression: An Atrial Tachypacing Rabbit Model. PLoS ONE, 2013, 8, e85639.	2.5	72
59	Thermodynamic and transport properties of two-temperature SF6 plasmas. Physics of Plasmas, 2012, 19, •	1.9	39
60	Theoretical computation of thermophysical properties of high-temperature F ₂ , CF ₄ , C ₂ F ₂ , C ₂ F ₄ , C ₂ F ₆ , C ₃ F ₆ and C ₃ F ₈ plasmas. Journal Physics D: Applied Physics, 2012, 45, 285201.	2.8	22
61	Thermophysical Properties of High Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000ÂK and 0.1–10Åatm. Part 2: Transport Coefficients. Plasma Chemistry and Plasma Processing, 2012, 32, 495-518.	2.4	23
62	The Reactive Thermal Conductivity of Thermal Equilibrium and Nonequilibrium Plasmas: Application to Nitrogen. IEEE Transactions on Plasma Science, 2012, 40, 980-989.	1.3	25
63	Thermophysical Properties of High-Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000 K and 0.1–10 atm. Part 1: Equilibrium Composition and Thermodynamic Properties. Plasma Chemistry and Plasma Processing, 2012, 32, 75-96.	2.4	27
64	Transport coefficients of high temperature CF <inf>4</inf> , C <inf>2</inf> F <inf>6</inf> , and C <inf>3</inf> F <inf>8</inf> as candidate of SF <inf>6</inf> . , 2011, , .		2
65	Thermophysical properties of carbon–argon and carbon–helium plasmas. Journal Physics D: Applied Physics, 2011, 44, 355207.	2.8	48
66	Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions. Physics of Plasmas, 2011, 18, .	1.9	68
67	Simulation of Arc Characteristics in Miniature Circuit Breaker. IEEE Transactions on Plasma Science, 2010, 38, 2306-2311.	1.3	71
68	Plume neutralization of ionic liquid electrospray thruster: Better insights from Particle-in-cell modelling. Plasma Sources Science and Technology, 0, , .	3.1	2