MaÅ,gorzata Zimowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5277497/publications.pdf

Version: 2024-02-01

57	1,131	19	31
papers	citations	h-index	g-index
59	59	59	1533
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The influence of lingonberry extract on the properties of novel, double-layered biopolymer films based on furcellaran, CMC and a gelatin hydrolysate. Food Hydrocolloids, 2022, 124, 107334.	10.7	33
2	Improvement of La0.8Sr0.2MnO3â^î^Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O3. Materials, 2022, 15, 642.	2.9	7
3	Double substituted NdBa(Fe,Co,Cu)2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties. Electrochimica Acta, 2022, 411, 140062.	5.2	7
4	Utilisation of soybean post-production waste in single- and double-layered films based on furcellaran to obtain packaging materials for food products prone to oxidation. Food Chemistry, 2022, 387, 132883.	8.2	13
5	Characterization of Furcellaran-Whey Protein Isolate Films with Green Tea or Pu-erh Extracts and Their Application as Packaging of an Acid-Curd Cheese. Food and Bioprocess Technology, 2021, 14, 78-92.	4.7	18
6	On the Role of Protonic Acid Sites in Cu Loaded FAU31 Zeolite as a Catalyst for the Catalytic Transformation of Furfural to Furan. Molecules, 2021, 26, 2015.	3.8	2
7	Anodic Electrodeposition of Chitosan–AgNP Composites Using In Situ Coordination with Copper Ions. Materials, 2021, 14, 2754.	2.9	8
8	Structural and electrochemical characterization of YBa(Fe,Co,Cu)2O5+δ layered perovskites as cathode materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 16977-16988.	7.1	13
9	Structural changes in smectites subjected to mechanochemical activation: The effect of the occupancy of the octahedral sites. Applied Clay Science, 2021, 213, 106214.	5.2	6
10	Aluminum Doped Titania as a Support of Copper Catalysts for SCR of Nitrogen Oxides. Materials, 2021, 14, 6021.	2.9	1
11	Active Double-Layered Films Enriched with AgNPs in Great Water Dock Root and Pu-Erh Extracts. Materials, 2021, 14, 6925.	2.9	11
12	Sonically modified hierarchical FAU-type zeolites as active catalysts for the production of furan from furfural. Ultrasonics Sonochemistry, 2020, 60, 104785.	8.2	6
13	Hydrogen production over Fe enriched porous clay-based nanocomposites and mesoporous silica in bio-ethanol reforming – The role of the clay component. Applied Clay Science, 2020, 198, 105801.	5. 2	5
14	Physicochemical and Biological Characterisation of Diclofenac Oligomeric Poly(3-hydroxyoctanoate) Hybrids as \hat{I}^2 -TCP Ceramics Modifiers for Bone Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 9452.	4.1	11
15	Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films. Carbohydrate Polymers, 2020, 240, 116244.	10.2	47
16	A Precursor Approach for the Development of Lace-like Fe ₂ O ₃ Nanocrystallites Triggered by Pressure Dependent Nucleation and Growth of Akaganeite over Clay Based Composites for Toluene Combustion. Journal of Physical Chemistry C, 2019, 123, 26236-26250.	3.1	9
17	Novel bioresorbable tricalcium phosphate/polyhydroxyoctanoate (TCP/PHO) composites as scaffolds for bone tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 235-245.	3.1	20
18	Solvent and substituent effects in hydrogenation of aromatic ketones over Ru/polymer catalyst under very mild conditions. Molecular Catalysis, 2019, 470, 145-151.	2.0	12

#	Article	IF	Citations
19	PDDA-Montmorillonite Composites Loaded with Ru Nanoparticles: Synthesis, Characterization, and Catalytic Properties in Hydrogenation of 2-Butanone. Polymers, 2018, 10, 865.	4.5	4
20	Physicochemical and electrochemical properties of the carbon materials containing nitrogen and cobalt derived from acetonitrile and Co–Al layered double hydroxides. Journal of Materials Science, 2018, 53, 11292-11314.	3.7	9
21	Water thermoporosimetry as a tool of characterization of the textural parameters of mesoporous materials. Journal of Thermal Analysis and Calorimetry, 2017, 127, 207-220.	3.6	19
22	Thermal stability of tetrabutyl-phosphonium and -ammonium exchanged montmorillonite: Influence of acid treatment. Applied Clay Science, 2017, 138, 63-73.	5.2	16
23	New approach for determining cartilage pore size distribution: NaCl-thermoporometry. Microporous and Mesoporous Materials, 2017, 241, 238-245.	4.4	23
24	Homogeneous gold nanoparticle monolayersâ€"QCM and electrokinetic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 226-235.	4.7	22
25	Structural rearrangements in Fe-porous clay heterostructures composites derived from Laponite \hat{A}^{\otimes} \hat{a} \in "Influence of preparation methods and Fe source. Microporous and Mesoporous Materials, 2016, 231, 66-81.	4.4	15
26	A comparative study of direct versus post-synthesis alumination of mesoporous FSM-16 silica. Materials Research Bulletin, 2016, 83, 623-631.	5.2	13
27	Nitrogen-doped carbon materials derived from acetonitrile and Mg-Co-Al layered double hydroxides as electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 2016, 212, 47-58.	5.2	13
28	Porosity of SBA-15 after functionalization of the surface with aminosilanes. Microporous and Mesoporous Materials, 2016, 234, 98-106.	4.4	16
29	The continuous conversion of ethanol and water mixtures into hydrogen over FexOy/MoO3 catalytic systemâ€"XPS and Mössbauer studies. Journal of Molecular Catalysis A, 2016, 423, 92-104.	4.8	25
30	Alteration of the structure and surface composition of crystalline-amorphous porous clay heterostructures upon iron doping from metal-organic source. Surface and Interface Analysis, 2016, 48, 527-531.	1.8	5
31	Thermoporosimetry of n-alkanes for characterization of mesoporous SBA-15 silicas – Towards deeper understanding the effect of the probe liquid nature. Microporous and Mesoporous Materials, 2016, 226, 25-33.	4.4	10
32	Thermoporosimetry of n-alkanes for characterization of mesoporous SBA-15 silicas – Refinement of methodology. Microporous and Mesoporous Materials, 2016, 222, 33-43.	4.4	13
33	Porosity characterization of SBA-15 silicas with thermoporosimetry of water and n-alkanes $\hat{a} \in \text{``Ihe}$ effect of the probe liquid nature. Microporous and Mesoporous Materials, 2015, 201, 141-150.	4.4	10
34	Cu/Mn-based mixed oxides derived from hydrotalcite-like precursors as catalysts for methane combustion. Applied Catalysis A: General, 2014, 474, 87-94.	4.3	36
35	Composite cathode materials Ag-Ba0.5Sr0.5Co0.8Fe0.2O3 for solid oxide fuel cells. Journal of Solid State Electrochemistry, 2014, 18, 3011-3021.	2.5	17
36	The morphology and optical properties of silicon etched with bimetallic catalysts. Elektronika, 2014, 1, 68-70.	0.0	0

#	Article	IF	Citations
37	Laponite-derived porous clay heterostructures: III. The effect of alumination. Microporous and Mesoporous Materials, 2013, 175, 67-75.	4.4	33
38	Preparation and characterization of mesoporous Cs2HPW12O40 salt, active in transformation of m-xylene. Applied Catalysis A: General, 2013, 450, 19-27.	4.3	6
39	Application of as-synthesized Co–Al layered double hydroxides for the preparation of the electroactive composites containing N-doped carbon nanotubes. Applied Clay Science, 2013, 72, 163-174.	5.2	19
40	Ordered mesoporous Ga2O3 and Ga2O3–Al2O3 prepared by nanocasting as effective catalysts for propane dehydrogenation in the presence of CO2. Catalysis Communications, 2013, 35, 95-100.	3.3	55
41	Composite Ag-La0.8Sr0.2MnO3-Ïf Cathode for Solid Oxide Fuel Cells. Archives of Metallurgy and Materials, 2013, 58, 1337-1340.	0.6	4
42	Ecofriendly production of ethylene by dehydration of ethanol over Ag3PW12O40 salt in nitrogen and air atmospheres. Applied Catalysis B: Environmental, 2012, 123-124, 448-456.	20.2	34
43	The Influence of Base Metal (M) Oxidation State in Au-M-O/TiO2 Systems on Their Catalytic Activity in Carbon Monoxide Oxidation. Catalysts, 2012, 2, 38-55.	3.5	6
44	Nanospace constraints in mesoporous silica carriersâ€"A factor of critical importance in promoting the catalytic activity of supported ruthenium (II) complex with hemilabile phosphine ligand. Applied Catalysis A: General, 2012, 427-428, 16-23.	4.3	1
45	The influence of surface composition of Ag3PW12O40 and Ag3PMo12O40 salts on their catalytic activity in dehydration of ethanol. Journal of Molecular Catalysis A, 2011, 351, 1-10.	4.8	40
46	Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro and Nano Letters, 2011, 6, 656.	1.3	64
47	Alterations of the surface and morphology of tetraalkyl-ammonium modified montmorillonites upon acid treatment. Journal of Colloid and Interface Science, 2011, 363, 213-222.	9.4	25
48	Laponite-derived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous and Mesoporous Materials, 2010, 127, 237-244.	4.4	83
49	Laponite-derived porous clay heterostructures: I. Synthesis and physicochemical characterization. Microporous and Mesoporous Materials, 2010, 127, 228-236.	4.4	58
50	Silver nanowires as a result of irradiation or hydrogen reduction of Ag3 PW12 O40 salt. Surface and Interface Analysis, 2010, 42, 757-761.	1.8	8
51	Microporosity in Mesoporous SBA-15 Supports: A Factor Influencing the Catalytic Performance of Immobilized Metalloporphyrin. Topics in Catalysis, 2009, 52, 1098-1104.	2.8	6
52	Layered Sodium Disilicates as Precursors of Mesoporous Silicas. Part II: Hydration of Î-Na2Si2O5 and α-Na2Si2O5. Mineralogia, 2007, 38, 161-170.	0.8	1
53	Layered Sodium Disilicates as Precursors of Mesoporous Silicas. Part I: Optimisation of the Synthesis Procedure of δ-Na2Si2O5 and α-Na2Si2O5. Mineralogia, 2007, 38, 151-160.	0.8	1
54	Catalytic combustion of toluene over mixed Cu–Mn oxides. Catalysis Today, 2007, 119, 321-326.	4.4	92

#	Article	IF	CITATIONS
55	Catalytic oxidation of cyclohexene over metalloporphyrin supported on mesoporous molecular sieves of FSM-16 typeã€"Steric effects induced by nanospace constraints. Catalysis Today, 2007, 124, 55-60.	4.4	26
56	Some aspects of metal-support strong interactions in Rh/Al2O3 catalyst under oxidising and reducing conditions. Chemical Physics Letters, 2006, 417, 137-142.	2.6	45
57	Role of Al segregation and high affinity to oxygen in formation of adhesive alumina layers on FeCr alloy support. Catalysis Today, 2005, 105, 629-633.	4.4	29