Javier Vaquero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5277208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The TCF-β Pathway: A Pharmacological Target in Hepatocellular Carcinoma?. Cancers, 2021, 13, 3248.	3.7	37
2	Zinc Finger Eâ€Box Binding Homeobox 1 Promotes Cholangiocarcinoma Progression Through Tumor Dedifferentiation and Tumor–Stroma Paracrine Signaling. Hepatology, 2021, 74, 3194-3212.	7.3	20
3	Deciphering FAK in intrahepatic cholangiocarcinoma: A novel therapeutic target?. Journal of Hepatology, 2021, 75, 765-767.	3.7	1
4	Cancer-associated fibroblasts in cholangiocarcinoma. Current Opinion in Gastroenterology, 2020, 36, 63-69.	2.3	43
5	Photothermal Depletion of Cancer-Associated Fibroblasts Normalizes Tumor Stiffness in Desmoplastic Cholangiocarcinoma. ACS Nano, 2020, 14, 5738-5753.	14.6	54
6	Cold-Atmospheric Plasma Induces Tumor Cell Death in Preclinical In Vivo and In Vitro Models of Human Cholangiocarcinoma. Cancers, 2020, 12, 1280.	3.7	43
7	Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver International, 2019, 39, 43-62.	3.9	54
8	Atmospheric pressure plasma jets applied to cancerology: correlating electrical configuration with in vivo toxicity and therapeutic efficiency. Journal Physics D: Applied Physics, 2019, 52, 245201.	2.8	20
9	The IGF2/IR/IGF1R Pathway in Tumor Cells and Myofibroblasts Mediates Resistance to EGFR Inhibition in Cholangiocarcinoma. Clinical Cancer Research, 2018, 24, 4282-4296.	7.0	68
10	Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology, 2018, 67, 762-773.	7.3	48
11	MicroRNAâ€506 promotes primary biliary cholangitis–like features in cholangiocytes and immune activation. Hepatology, 2018, 67, 1420-1440.	7.3	72
12	Unveiling resistance mechanisms to EGFR inhibitors in cholangiocarcinoma. Oncotarget, 2018, 9, 37274-37275.	1.8	6
13	Role of the PDZ-scaffold protein NHERF1/EBP50 in cancer biology: from signaling regulation to clinical relevance. Oncogene, 2017, 36, 3067-3079.	5.9	69
14	Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks. Journal of Hepatology, 2017, 66, 424-441.	3.7	115
15	Involvement of UDP-Glucuronosyltransferases and Sulfotransferases in the Excretion and Tissue Distribution of Resveratrol in Mice. Nutrients, 2017, 9, 1347.	4.1	41
16	Loss of ezrin in human intrahepatic cholangiocarcinoma is associated with ectopic expression of E adherin. Histopathology, 2016, 69, 211-221.	2.9	4
17	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	17.8	964
18	Rac1 and EMT: a dangerous liaison?. Translational Cancer Research, 2016, 5, S1483-S1485.	1.0	1

JAVIER VAQUERO

#	Article	IF	CITATIONS
19	E-cadherin, guardian of liver physiology. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 3-6.	1.5	18
20	Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochemical Pharmacology, 2013, 86, 926-939.	4.4	88
21	FXR-dependent and -independent interaction of glucocorticoids with the regulatory pathways involved in the control of bile acid handling by the liver. Biochemical Pharmacology, 2013, 85, 829-838.	4.4	25
22	Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2212-2219.	4.1	46
23	Expression of <i>SLC22A1</i> variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib. Hepatology, 2013, 58, 1065-1073.	7.3	124
24	Characterization of the Role of ABCG2 as a Bile Acid Transporter in Liver and Placenta. Molecular Pharmacology, 2012, 81, 273-283.	2.3	63
25	Up-regulation of FXR isoforms is not required for stimulation of the expression of genes involved in the lack of response of colon cancer to chemotherapy. Pharmacological Research, 2012, 66, 419-427.	7.1	9
26	Cisplatin-Induced Chemoresistance in Colon Cancer Cells Involves FXR-Dependent and FXR-Independent Up-Regulation of ABC Proteins. Molecular Pharmaceutics, 2012, 9, 2565-2576.	4.6	55
27	No Correlation between the Expression of FXR and Genes Involved in Multidrug Resistance Phenotype of Primary Liver Tumors. Molecular Pharmaceutics, 2012, 9, 1693-1704.	4.6	73