Shinya Yoshikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5276917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15304-15309.	7.1	414
2	Reaction Mechanism of Cytochrome <i>c</i> Oxidase. Chemical Reviews, 2015, 115, 1936-1989.	47.7	377
3	Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO Journal, 2007, 26, 1713-1725.	7.8	331
4	Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL. Nature Methods, 2014, 11, 734-736.	19.0	237
5	Bovine cytochrome <i>c</i> oxidase structures enable O ₂ reduction with minimization of reactive oxygens and provide a proton-pumping gate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7740-7745.	7.1	146
6	The proton pumping pathway of bovine heart cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4200-4205.	7.1	132
7	A peroxide bridge between Fe and Cu ions in the O ₂ reduction site of fully oxidized cytochrome <i>c</i> oxidase could suppress the proton pump. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2165-2169.	7.1	132
8	Time-resolved resonance Raman elucidation of the pathway for dioxygen reduction by cytochrome c oxidase. Journal of the American Chemical Society, 1993, 115, 8527-8536.	13.7	124
9	Proton-Pumping Mechanism of Cytochrome <i>c</i> Oxidase. Annual Review of Biophysics, 2011, 40, 205-223.	10.0	115
10	<i>Higd1a</i> is a positive regulator of cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1553-1558.	7.1	109
11	Time-Resolved Resonance Raman Evidence for Tight Coupling between Electron Transfer and Proton Pumping of CytochromecOxidase upon the Change from the FeVOxidation Level to the FeIVOxidation Level. Journal of the American Chemical Society, 1996, 118, 5443-5449.	13.7	93
12	Microcirculating System for Simultaneous Determination of Raman and Absorption Spectra of Enzymatic Reaction Intermediates and Its Application to the Reaction of CytochromecOxidase with Hydrogen Peroxide. Biochemistry, 1996, 35, 76-82.	2.5	88
13	The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle. Journal of Biological Chemistry, 2016, 291, 23882-23894.	3.4	75
14	A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. Science Advances, 2017, 3, e1603042.	10.3	68
15	Quantitative Reevaluation of the Redox Active Sites of Crystalline Bovine Heart Cytochrome c Oxidase. Journal of Biological Chemistry, 1999, 274, 33403-33411.	3.4	59
16	5 Cytochrome c Oxidase. The Enzymes, 1976, 13, 299-344.	1.7	42
17	Two Tyrosyl Radicals Stabilize High Oxidation States in Cytochrome <i>c</i> Oxidase for Efficient Energy Conservation and Proton Translocation. Journal of the American Chemical Society, 2012, 134, 4753-4761.	13.7	36
18	A resonance Raman band assignable to the O–O stretching mode in the resting oxidized state of bovine heart cytochrome c oxidase. Journal of Bioenergetics and Biomembranes, 2010, 42, 241-243.	2.3	29

Shinya Yoshikawa

#	Article	IF	CITATIONS
19	Effective Pumping Proton Collection Facilitated by a Copper Site (CuB) of Bovine Heart Cytochrome c Oxidase, Revealed by a Newly Developed Time-resolved Infrared System. Journal of Biological Chemistry, 2013, 288, 30259-30269.	3.4	29
20	X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms. Journal of Biological Chemistry, 2020, 295, 5818-5833.	3.4	21
21	Structure analysis of bovine heart cytochromecoxidase at 2.8â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 31-45.	2.5	14
22	Critical roles of the CuB site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. Journal of Biological Chemistry, 2021, 297, 100967.	3.4	14
23	X-ray structural analyses of azide-bound cytochrome c oxidases reveal that the H-pathway is critically important for the proton-pumping activity. Journal of Biological Chemistry, 2018, 293, 14868-14879.	3.4	13
24	The 1.3-Ã resolution structure of bovine cytochrome c oxidase suggests a dimerization mechanism. BBA Advances, 2021, 1, 100009.	1.6	9
25	Structure of bovine cytochrome <i>c</i> oxidase in the ligand-free reduced state at neutral pH. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 92-98.	0.8	4