
Mohammad Safi Rahmanifar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5276695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trilayer Metal–Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. Journal of the American Chemical Society, 2022, 144, 3411-3428.	13.7	142
2	Laserâ€Scribed Graphene–Polyaniline Microsupercapacitor for Internetâ€ofâ€Things Applications. Advanced Functional Materials, 2022, 32, .	14.9	27
3	Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor. Journal of Materials Chemistry A, 2021, 9, 7712-7725.	10.3	20
4	The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors. Journal of Power Sources, 2021, 494, 229741.	7.8	34
5	In Situ Growth of Ni–Zn–Fe Layered Double Hydroxide on Graphene Aerogel: An Advanced Twoâ€inâ€One Material for Both the Anode and Cathode of Supercapacitors. Energy Technology, 2021, 9, 2100645.	3.8	5
6	Polyaniline-Lignin Interpenetrating Network for Supercapacitive Energy Storage. Nano Letters, 2021, 21, 9485-9493.	9.1	45
7	Effects of Increasing Acoustic Power at a Small-Diameter Ultrasonic Horn Tip on the Synthesis and Characteristics of MnO2 Nanoparticles. Journal of the Korean Physical Society, 2020, 77, 153-160.	0.7	0
8	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	10.0	26
9	Nile Blue Functionalized Graphene Aerogel as a Pseudocapacitive Negative Electrode Material across the Full pH Range. ACS Nano, 2019, 13, 12567-12576.	14.6	66
10	Synthesis of MnO2 Nanoparticles in the Presence and Absence of Ultrasonic Irradiation. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 2619-2626.	1.5	3
11	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	38.1	824
12	Asymmetric supercapacitors: An alternative to activated carbon negative electrodes based on earth abundant elements. Materials Today Energy, 2019, 12, 26-36.	4.7	63
13	A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochimica Acta, 2018, 275, 76-86.	5.2	264
14	An integrated electrochemical device based on earth-abundant metals for both energy storage and conversion. Energy Storage Materials, 2018, 11, 282-293.	18.0	82
15	The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit. Nano Energy, 2018, 44, 489-498.	16.0	105
16	Facile synthesis of copper hexacyanoferrate/graphene nanocomposite for electrochemical energy storage. Applied Organometallic Chemistry, 2018, 32, e4615.	3.5	15
17	Thionine Functionalized 3D Graphene Aerogel: Combining Simplicity and Efficiency in Fabrication of a Metalâ€Free Redox Supercapacitor. Advanced Energy Materials, 2018, 8, 1802869.	19.5	153
18	Synergistic effect between redox additive electrolyte and PANI-rGO nanocomposite electrode for high energy and high power supercapacitor. Electrochimica Acta, 2017, 228, 290-298.	5.2	85

#	Article	IF	CITATIONS
19	Enhancing the cycle life of Lead-Acid batteries by modifying negative grid surface. Electrochimica Acta, 2017, 235, 10-18.	5.2	25
20	A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite. Journal of the Iranian Chemical Society, 2017, 14, 2579-2590.	2.2	15
21	Synthesis of NiMnO ₃ /C nano-composite electrode materials for electrochemical capacitors. Nanotechnology, 2016, 27, 315401.	2.6	51
22	Fabrication of high power LiNi0.5Mn1.5O4 battery cathodes by nanostructuring of electrode materials. RSC Advances, 2015, 5, 50433-50439.	3.6	12
23	Designing 3D Highly Ordered Nanoporous CuO Electrodes for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & amp; Interfaces, 2015, 7, 4851-4860.	8.0	340
24	Electrodeposition of morphology- and size-tuned PbO2 nanostructures in the presence of PVP and their electrochemical studies. Materials Chemistry and Physics, 2015, 156, 121-128.	4.0	29
25	Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent. Applied Surface Science, 2015, 341, 109-119.	6.1	26
26	Highly Ordered Mesoporous CuCo ₂ O ₄ Nanowires, a Promising Solution for High-Performance Supercapacitors. Chemistry of Materials, 2015, 27, 3919-3926.	6.7	353
27	Morphologically controlled preparation of CuO nanostructures under ultrasound irradiation and their evaluation as pseudocapacitor materials. Ultrasonics Sonochemistry, 2014, 21, 643-652.	8.2	47
28	Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chemical Communications, 2014, 50, 1972.	4.1	277
29	Supercapacitive properties of coiled carbon nanotubes directly grown on nickel nanowires. Journal of Materials Chemistry A, 2014, 2, 17446-17453.	10.3	30
30	Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochimica Acta, 2013, 88, 347-357.	5.2	355
31	High performance hybrid supercapacitor based on two nanostructured conducting polymers: Self-doped polyaniline and polypyrrole nanofibers. Electrochimica Acta, 2012, 78, 212-222.	5.2	169
32	Synthesis of micro and nanostructured MnO2 and their comparative study in lithium battery. Journal of the Iranian Chemical Society, 2012, 9, 389-395.	2.2	10
33	High performance battery–supercapacitor hybrid energy storage system based on self-doped polyaniline nanofibers. Synthetic Metals, 2011, 161, 2017-2023.	3.9	60
34	Change in morphology of polyaniline/graphite composite: A fractal dimension approach. Synthetic Metals, 2006, 156, 911-916.	3.9	29
35	Lead-acid batteries with foam grids. Journal of Power Sources, 2006, 158, 879-884.	7.8	28
36	A study on open circuit voltage reduction as a main drawback of Zn–polyaniline rechargeable batteries. Synthetic Metals, 2005, 155, 480-484.	3.9	34

#	Article	IF	CITATIONS
37	A PVCâ€Based Vanadyl Phosphate Membrane Potentiometric Sensor for Vanadyl Ions. Analytical Letters, 2004, 37, 203-212.	1.8	4
38	What is the limiting factor of the cycle-life of Zn–polyaniline rechargeable batteries?. Journal of Power Sources, 2004, 132, 296-301.	7.8	57
39	A PVC-based 1,8-diaminonaphthalen electrode for selective determination of vanadyl ion. Talanta, 2003, 60, 853-859.	5.5	12
40	Design of a New Dodecyl Sulfate-Selective Electrode Based on Conductive Polyaniline. Analytical Sciences, 2002, 18, 137-140.	1.6	36
41	Effect of self-doped polyaniline on performance of secondary Zn–polyaniline battery. Journal of Power Sources, 2002, 110, 229-232.	7.8	82